pgm3 = "/mnt/CLAWS1/tbeier/tmp/gm3.h5" if True: data = vigra.readHDF5(path, 'data')[0:250,0:255,0:255].astype(numpy.float32) ########################## # compute non local mean # ########################## if False: print "non local mean" policy = denoising.RatioPolicy(sigma=2.0, meanRatio=0.90, varRatio=0.80) res = denoising.nonLocalMean(image=data, policy=policy, patchRadius=2, searchRadius=7, sigmaSpatial=2.0, sigmaPresmoothing=1.0, stepSize=2, iterations=1, verbose=True) vigra.impex.writeHDF5(res, pnlm, 'data') if True: print "non local mean" policy = denoising.RatioPolicy(sigma=2.0, meanRatio=0.90, varRatio=0.80) res = denoising.nonLocalMean(image=data, policy=policy, patchRadius=2, searchRadius=14, sigmaSpatial=1.5, sigmaPresmoothing=1.0, stepSize=2, iterations=1, verbose=True) vigra.impex.writeHDF5(res, pnlm2, 'data') ###################### # compute tv bregman # ###################### if False: print "tvBregman isotropic" res = denoising.tvBregman(data,weight=2.0, isotropic=True)
policy = denoising.RatioPolicy(sigma=1.0, meanRatio=0.95, varRatio=0.8) nlmp = dict(image=data, policy=policy, patchRadius=2, searchRadius=70, sigmaSpatial=2.0, sigmaPresmoothing=1.3, stepSize=2, iterations=1, verbose=True, nThreads=17) if False: print "non truncated" smoothed = denoising.nonLocalMean(wTruncate=0.0, **nlmp) vigra.impex.writeHDF5(smoothed, sPath, 'data') if False: print "truncated" smoothedT = denoising.nonLocalMean(wTruncate=0.15, **nlmp) vigra.impex.writeHDF5(smoothedT, stPath, 'data') if False: data = data.astype(numpy.float32) ew = vigra.filters.hessianOfGaussianEigenvalues(data, 4.0) ew = numpy.sort(ew, axis=3)[:, :, :, 2] vigra.impex.writeHDF5(ew, ewPath, 'data') if False:
lssPath = "/mnt/CLAWS1/tbeier/data/stack_with_holes/labelsSS.h5" ewPath = "/mnt/CLAWS1/tbeier/data/stack_with_holes/ew.h5" ewsPath = "/mnt/CLAWS1/tbeier/data/stack_with_holes/ews.h5" ewssPath = "/mnt/CLAWS1/tbeier/data/stack_with_holes/ewss.h5" data = vigra.readHDF5(path, 'data')[0:600,0:600,0:100].astype(numpy.float64) policy = denoising.RatioPolicy(sigma=1.0, meanRatio=0.95, varRatio=0.8) nlmp = dict(image=data, policy=policy, patchRadius=2, searchRadius=70, sigmaSpatial=2.0, sigmaPresmoothing=1.3, stepSize=2, iterations=1, verbose=True, nThreads=17) if False: print "non truncated" smoothed = denoising.nonLocalMean(wTruncate=0.0,**nlmp) vigra.impex.writeHDF5(smoothed, sPath, 'data') if False: print "truncated" smoothedT = denoising.nonLocalMean(wTruncate=0.15,**nlmp) vigra.impex.writeHDF5(smoothedT, stPath, 'data') if False: data=data.astype(numpy.float32)