print(type(Ytrain)) print(type(X[0])) print(type(X[0][0])) print(type(Ytrain[0])) assert (len(X) == len(Ytrain)) nnet.fit(X, Ytrain) from sklearn.model_selection import cross_val_predict # ytrain_pred = cross_val_predict(nnet, X, Ytrain,cv=5) print("Training done") Ytrain_pred = nnet.predict(X) correct = 0 for i in range(len(X)): if (Ytrain_pred[i] == Ytrain[i]): correct += 1 print(Ytrain_pred) print("Training Accuracy={}%".format(correct / len(X) * 100)) tX = np.load("./test/test.npy") testX = [] for a in tX: # c = [] # for b in a: # c.append(np.float32(b)) c = np.array(list(a))
x = F.dropout(x, training=self.training) x = self.fc2(x) x = F.softmax(x, dim=-1) return x cnn = NeuralNetClassifier( Cnn, max_epochs=8, lr=1, optimizer=torch.optim.Adadelta, # device='cuda', # uncomment this to train with CUDA ) #train the module cnn.fit(XCnn_train, y_train); #Use validation set to see the accuracy cnn_pred = cnn.predict(XCnn_test) print(np.mean(cnn_pred == y_test)) #predict the test set cnn_pred_test = cnn.predict(test) # In[80]: #write to .csv file ID = np.arange(1,20001) ID = ID.tolist() data = zip(ID,cnn_pred_test) with open('CNN_v6.csv', 'w',newline='') as outfile: mywriter = csv.writer(outfile) # manually add header