random_seed = 42 lr_estimator = LogisticRegression(solver='liblinear', random_state=random_seed) search_params = { "C" : [1.e-01, 1.e+00, 1.e+01], "penalty" : [ "l1", "l2" ] } ######### skrobot Code # Build an Experiment experiment = Experiment('experiments-output').set_source_code_file_path(__file__).set_experimenter('echatzikyriakidis').build() # Run Feature Selection Task features_columns = experiment.run(FeatureSelectionCrossValidationTask (estimator=lr_estimator, train_data_set_file_path=train_data_set_file_path, random_seed=random_seed).custom_folds(folds_file_path=folds_file_path)) # Run Hyperparameters Search Task hyperparameters_search_results = experiment.run(HyperParametersSearchCrossValidationTask (estimator=lr_estimator, search_params=search_params, train_data_set_file_path=train_data_set_file_path, feature_columns=features_columns, random_seed=random_seed).random_search().custom_folds(folds_file_path=folds_file_path)) # Run Evaluation Task evaluation_results = experiment.run(EvaluationCrossValidationTask(estimator=lr_estimator, estimator_params=hyperparameters_search_results['best_params'], train_data_set_file_path=train_data_set_file_path, test_data_set_file_path=test_data_set_file_path, export_classification_reports=True,
from os import path from sklearn.linear_model import LogisticRegression from skrobot.core import Experiment from skrobot.tasks import FeatureSelectionCrossValidationTask ######### Initialization Code random_seed = 42 lr_estimator = LogisticRegression(solver='liblinear', random_state=random_seed) ######### skrobot Code # Build an Experiment experiment = Experiment('experiments-output').set_source_code_file_path( __file__).set_experimenter('echatzikyriakidis').build() # Run Feature Selection Task features_columns = experiment.run( FeatureSelectionCrossValidationTask( estimator=lr_estimator, train_data_set_file_path=path.join('data', 'money-laundering-data-train.csv'), random_seed=random_seed).custom_folds( folds_file_path=path.join('data', 'money-laundering-folds.csv'))) # Print in-memory results print(features_columns)
random_seed = 42 lr_estimator = LogisticRegression(solver='liblinear', random_state=random_seed) search_params = {"C": [1.e-01, 1.e+00, 1.e+01], "penalty": ["l1", "l2"]} ######### skrobot Code # Build an Experiment experiment = Experiment('experiments-output').set_source_code_file_path( __file__).set_experimenter('echatzikyriakidis').build() # Run Feature Selection Task features_columns = experiment.run( FeatureSelectionCrossValidationTask( estimator=lr_estimator, train_data_set=train_data_set, random_seed=random_seed).custom_folds(folds_data=folds_data)) # Run Hyperparameters Search Task hyperparameters_search_results = experiment.run( HyperParametersSearchCrossValidationTask( estimator=lr_estimator, search_params=search_params, train_data_set=train_data_set, feature_columns=features_columns, random_seed=random_seed).random_search().custom_folds( folds_data=folds_data)) # Run Evaluation Task evaluation_results = experiment.run( EvaluationCrossValidationTask(
["mean", "median"] } ######### skrobot Code # Create a Task Runner task_runner = TaskRunner( f'task-runner-output-{datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")}' ) # Run Feature Selection Task features_columns = task_runner.run( FeatureSelectionCrossValidationTask( estimator=classifier, train_data_set=train_data_set, preprocessor=preprocessor, min_features_to_select=4, id_column=id_column, label_column=label_column, random_seed=random_seed).stratified_folds(total_folds=5, shuffle=True)) pipe = Pipeline( steps=[('preprocessor', preprocessor), ('selector', ColumnSelector( cols=features_columns)), ('classifier', classifier)]) # Run Hyperparameters Search Task hyperparameters_search_results = task_runner.run( HyperParametersSearchCrossValidationTask( estimator=pipe, search_params=search_params, train_data_set=train_data_set,
from os import path from sklearn.linear_model import LogisticRegression from skrobot.core import Experiment from skrobot.tasks import FeatureSelectionCrossValidationTask ######### Initialization Code random_seed = 42 lr_estimator = LogisticRegression(solver='liblinear', random_state=random_seed) ######### skrobot Code # Build an Experiment experiment = Experiment('experiments-output').set_source_code_file_path(__file__).set_experimenter('echatzikyriakidis').build() # Run Feature Selection Task features_columns = experiment.run(FeatureSelectionCrossValidationTask (estimator=lr_estimator, train_data_set=path.join('data','money-laundering-data-train.csv'), random_seed=random_seed).custom_folds(folds_data=path.join('data','money-laundering-folds.csv'))) # Print in-memory results print(features_columns)