def test_cboss_on_power_demand(): # load power demand data X_train, y_train = load_italy_power_demand(split="train", return_X_y=True) X_test, y_test = load_italy_power_demand(split="test", return_X_y=True) indices = np.random.RandomState(0).permutation(100) # train cBOSS cboss = ContractableBOSS(n_parameter_samples=50, max_ensemble_size=10, random_state=0) cboss.fit(X_train, y_train) score = cboss.score(X_test.iloc[indices], y_test[indices]) assert score >= 0.9
def build_classifiers(): """Examples of building a classifier. 1. Directly from 2D numpy arrays. 2. Directly from 3D numpy arrays. 3. From a nested pandas. 4. From a baked in dataset. 5. From any UCR/UEA dataset downloaded from timeseriesclassification.com. """ # Create an array # Random forest, rocket and HC2. randf = RandomForestClassifier() trainX, train_y, testX, test_y = make_toy_2d_problem() X = trainX.reshape(trainX.shape[0], 1, trainX.shape[1]) train_y = pd.Series(train_y) test_y = pd.Series(test_y) # randf.fit(trainX, train_y) cls1 = ContractableBOSS(time_limit_in_minutes=1) # cls2 = BOSSEnsemble() cls1.fit(trainX, train_y) print(" CBOSS acc = ", cls1.score(testX, test_y))