示例#1
0
def test_heterogenous_pipeline_column_ensmbler():
    X_train, y_train = load_basic_motions("TRAIN", return_X_y=True)
    X_test, y_test = load_basic_motions("TEST", return_X_y=True)

    n_intervals = 3

    steps = [('segment', RandomIntervalSegmenter(n_intervals=n_intervals)),
             ('transform',
              FeatureUnion([('mean',
                             RowwiseTransformer(
                                 FunctionTransformer(func=np.mean,
                                                     validate=False))),
                            ('std',
                             RowwiseTransformer(
                                 FunctionTransformer(func=np.std,
                                                     validate=False)))])),
             ('clf', DecisionTreeClassifier())]
    clf1 = Pipeline(steps, random_state=1)

    # dims 0-3 with alternating classifiers.
    ct = ColumnEnsembleClassifier([
        ("RandomIntervalTree", clf1, [0]),
        ("KNN4", KNNTSC(n_neighbors=1), [4]),
        ("BOSSEnsemble1 ", BOSSEnsemble(ensemble_size=3), [1]),
        ("KNN2", KNNTSC(n_neighbors=1), [2]),
        ("BOSSEnsemble3", BOSSEnsemble(ensemble_size=3), [3]),
    ])

    ct.fit(X_train, y_train)
    ct.score(X_test, y_test)
示例#2
0
def test_homogeneous_column_ensembler():
    X_train, y_train = load_basic_motions("TRAIN", return_X_y=True)
    X_test, y_test = load_basic_motions("TEST", return_X_y=True)

    cts = HomogeneousColumnEnsembleClassifier(KNNTSC(n_neighbors=1))

    cts.fit(X_train, y_train)
    cts.score(X_test, y_test) == 1.0
示例#3
0
def test_homogeneous_pipeline_column_ensmbler():
    X_train, y_train = load_basic_motions("TRAIN", return_X_y=True)
    X_test, y_test = load_basic_motions("TEST", return_X_y=True)

    ct = ColumnEnsembleClassifier([("KNN%d " % i, KNNTSC(n_neighbors=1), [i])
                                   for i in range(0, X_train.shape[1])])

    ct.fit(X_train, y_train)
    ct.score(X_test, y_test)
示例#4
0
def test_univariate_column_ensembler_init():
    ct = ColumnEnsembleClassifier([("KNN1", KNNTSC(n_neighbors=1), [1]),
                                   ("KNN2", KNNTSC(n_neighbors=1), [2])])