示例#1
0
def test_boxcox_transform():
    y = load_airline()
    t = TabularToSeriesAdaptor(PowerTransformer(method="box-cox", standardize=False))
    actual = t.fit_transform(y)

    expected, _ = boxcox(np.asarray(y))  # returns fitted lambda as second output
    np.testing.assert_array_equal(actual, expected)
示例#2
0
    def compute_expected_y_pred(y_train, fh):
        # fitting
        yt = y_train.copy()
        t1 = ExponentTransformer()
        yt = t1.fit_transform(yt)
        t2 = TabularToSeriesAdaptor(MinMaxScaler())
        yt = t2.fit_transform(yt)
        forecaster = NaiveForecaster()
        forecaster.fit(yt, fh=fh)

        # predicting
        y_pred = forecaster.predict()
        y_pred = t2.inverse_transform(y_pred)
        y_pred = t1.inverse_transform(y_pred)
        return y_pred
示例#3
0
def test_pipeline():
    """Test results of TransformedTargetForecaster."""
    y = load_airline()
    y_train, y_test = temporal_train_test_split(y)

    forecaster = TransformedTargetForecaster([
        ("t1", ExponentTransformer()),
        ("t2", TabularToSeriesAdaptor(MinMaxScaler())),
        ("forecaster", NaiveForecaster()),
    ])
    fh = np.arange(len(y_test)) + 1
    forecaster.fit(y_train, fh=fh)
    actual = forecaster.predict()

    def compute_expected_y_pred(y_train, fh):
        # fitting
        yt = y_train.copy()
        t1 = ExponentTransformer()
        yt = t1.fit_transform(yt)
        t2 = TabularToSeriesAdaptor(MinMaxScaler())
        yt = t2.fit_transform(yt)
        forecaster = NaiveForecaster()
        forecaster.fit(yt, fh=fh)

        # predicting
        y_pred = forecaster.predict()
        y_pred = t2.inverse_transform(y_pred)
        y_pred = t1.inverse_transform(y_pred)
        return y_pred

    expected = compute_expected_y_pred(y_train, fh)
    np.testing.assert_array_equal(actual, expected)
示例#4
0
    def get_test_params(cls):
        """Return testing parameter settings for the estimator.

        Returns
        -------
        params : dict or list of dict, default = {}
            Parameters to create testing instances of the class
            Each dict are parameters to construct an "interesting" test instance, i.e.,
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
            `create_test_instance` uses the first (or only) dictionary in `params`
        """
        from sklearn.preprocessing import StandardScaler

        from sktime.forecasting.naive import NaiveForecaster
        from sktime.transformations.series.adapt import TabularToSeriesAdaptor
        from sktime.transformations.series.boxcox import BoxCoxTransformer

        STEPS1 = [
            ("transformer", TabularToSeriesAdaptor(StandardScaler())),
            ("forecaster", NaiveForecaster()),
        ]
        params1 = {"steps": STEPS1}

        STEPS2 = [
            ("transformer", BoxCoxTransformer()),
            ("forecaster", NaiveForecaster()),
        ]
        params2 = {"steps": STEPS2}

        return [params1, params2]
示例#5
0
    def get_test_params(cls, parameter_set="default"):
        """Return testing parameter settings for the estimator.

        Parameters
        ----------
        parameter_set : str, default="default"
            Name of the set of test parameters to return, for use in tests. If no
            special parameters are defined for a value, will return `"default"` set.

        Returns
        -------
        params : dict or list of dict, default = {}
            Parameters to create testing instances of the class
            Each dict are parameters to construct an "interesting" test instance, i.e.,
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
            `create_test_instance` uses the first (or only) dictionary in `params`
        """
        from sklearn.preprocessing import StandardScaler

        from sktime.forecasting.arima import ARIMA
        from sktime.forecasting.naive import NaiveForecaster
        from sktime.transformations.series.adapt import TabularToSeriesAdaptor
        from sktime.transformations.series.exponent import ExponentTransformer

        # StandardScaler does not skip fit, NaiveForecaster is not probabilistic
        STEPS1 = [
            ("transformer", TabularToSeriesAdaptor(StandardScaler())),
            ("forecaster", NaiveForecaster()),
        ]
        params1 = {"steps": STEPS1}

        # ARIMA has probabilistic methods, ExponentTransformer skips fit
        STEPS2 = [
            ("transformer", ExponentTransformer()),
            ("forecaster", ARIMA()),
        ]
        params2 = {"steps": STEPS2}

        return [params1, params2]
示例#6
0
    def __rmul__(self, other):
        """Magic * method, return concatenated ClassifierPipeline, transformers on left.

        Implemented for `other` being a transformer, otherwise returns `NotImplemented`.

        Parameters
        ----------
        other: `sktime` transformer, must inherit from BaseTransformer
            otherwise, `NotImplemented` is returned

        Returns
        -------
        ClassifierPipeline object, concatenation of `other` (first) with `self` (last).
        """
        from sktime.classification.compose import ClassifierPipeline
        from sktime.transformations.base import BaseTransformer
        from sktime.transformations.compose import TransformerPipeline
        from sktime.transformations.series.adapt import TabularToSeriesAdaptor

        # behaviour is implemented only if other inherits from BaseTransformer
        #  in that case, distinctions arise from whether self or other is a pipeline
        #  todo: this can probably be simplified further with "zero length" pipelines
        if isinstance(other, BaseTransformer):
            # ClassifierPipeline already has the dunder method defined
            if isinstance(self, ClassifierPipeline):
                return other * self
            # if other is a TransformerPipeline but self is not, first unwrap it
            elif isinstance(other, TransformerPipeline):
                return ClassifierPipeline(classifier=self,
                                          transformers=other.steps)
            # if neither self nor other are a pipeline, construct a ClassifierPipeline
            else:
                return ClassifierPipeline(classifier=self,
                                          transformers=[other])
        elif is_sklearn_transformer(other):
            return TabularToSeriesAdaptor(other) * self
        else:
            return NotImplemented
示例#7
0
        "transformer2",
        SeriesToSeriesRowTransformer(SERIES_TO_SERIES_TRANSFORMER,
                                     check_transformer=False),
    ),
]
REGRESSOR = LinearRegression()
ANOMALY_DETECTOR = KNN()
TIME_SERIES_CLASSIFIER = TSFC(n_estimators=3)
TIME_SERIES_CLASSIFIERS = [
    ("tsf1", TIME_SERIES_CLASSIFIER),
    ("tsf2", TIME_SERIES_CLASSIFIER),
]
FORECASTER = NaiveForecaster()
FORECASTERS = [("f1", FORECASTER), ("f2", FORECASTER)]
STEPS = [
    ("transformer", TabularToSeriesAdaptor(StandardScaler())),
    ("forecaster", NaiveForecaster()),
]
ESTIMATOR_TEST_PARAMS = {
    ColumnEnsembleForecaster: {
        "forecasters": FORECASTER
    },
    OnlineEnsembleForecaster: {
        "forecasters": FORECASTERS
    },
    FeatureUnion: {
        "transformer_list": TRANSFORMERS
    },
    DirectTabularRegressionForecaster: {
        "estimator": REGRESSOR
    },