示例#1
0
    def get_test_params(cls, parameter_set="default"):
        """Return testing parameter settings for the estimator.

        Parameters
        ----------
        parameter_set : str, default="default"
            Name of the set of test parameters to return, for use in tests. If no
            special parameters are defined for a value, will return `"default"` set.
            There are currently no reserved values for transformers.

        Returns
        -------
        params : dict or list of dict, default = {}
            Parameters to create testing instances of the class
            Each dict are parameters to construct an "interesting" test instance, i.e.,
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
            `create_test_instance` uses the first (or only) dictionary in `params`
        """
        from sktime.transformations.series.boxcox import BoxCoxTransformer

        params = [
            {
                "transformer": BoxCoxTransformer()
            },
            {
                "transformer": BoxCoxTransformer(),
                "skip_inverse_transform": False
            },
        ]
        return params
示例#2
0
def test_transform_fitintransform():
    """Test fit/transform against BoxCoxTransformer."""
    fitintransform = FitInTransform(BoxCoxTransformer())
    fitintransform.fit(X=X_train)
    y_hat = fitintransform.transform(X=X_test)

    y_hat_expected = BoxCoxTransformer().fit_transform(X_test)
    assert_series_equal(y_hat, y_hat_expected)
示例#3
0
def test_boxcox_against_scipy():
    y = load_airline()

    t = BoxCoxTransformer()
    actual = t.fit_transform(y)

    excepted, expected_lambda = boxcox(y.values)

    np.testing.assert_array_equal(actual, excepted)
    assert t.lambda_ == expected_lambda
示例#4
0
    def get_test_params(cls):
        """Return testing parameter settings for the estimator.

        Returns
        -------
        params : dict or list of dict, default = {}
            Parameters to create testing instances of the class
            Each dict are parameters to construct an "interesting" test instance, i.e.,
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
            `create_test_instance` uses the first (or only) dictionary in `params`
        """
        from sklearn.preprocessing import StandardScaler

        from sktime.forecasting.naive import NaiveForecaster
        from sktime.transformations.series.adapt import TabularToSeriesAdaptor
        from sktime.transformations.series.boxcox import BoxCoxTransformer

        STEPS1 = [
            ("transformer", TabularToSeriesAdaptor(StandardScaler())),
            ("forecaster", NaiveForecaster()),
        ]
        params1 = {"steps": STEPS1}

        STEPS2 = [
            ("transformer", BoxCoxTransformer()),
            ("forecaster", NaiveForecaster()),
        ]
        params2 = {"steps": STEPS2}

        return [params1, params2]
示例#5
0
def test_guerrero_against_r_implementation(bounds, r_lambda):
    """
    Testing lambda values estimated by the R implementation of the Guerrero method
    https://github.com/robjhyndman/forecast/blob/master/R/guerrero.R
    against the guerrero method in BoxCoxTransformer.
    R code to generate the hardcoded value for bounds=(-1, 2) used in the test
    ('Airline.csv' contains the data from 'load_airline()'):
        airline_file <- read.csv(file = 'Airline.csv')[,c('Passengers')]
        airline.ts <- ts(airline_file)
        guerrero(airline.ts, lower=-1, upper=2, nonseasonal.length = 20)
    Output:
        -0.156981228426408
    """
    y = load_airline()
    t = BoxCoxTransformer(bounds=bounds, method="guerrero", sp=20)
    t.fit(y)
    np.testing.assert_almost_equal(t.lambda_, r_lambda, decimal=4)
示例#6
0
    def _fit(self, X, y=None):
        """Fit transformer to X and y.

        private _fit containing the core logic, called from fit

        Parameters
        ----------
        X : pd.Series
            Data to be transformed
        y : ignored, for interface compatibility

        Returns
        -------
        self: reference to self
        """
        if self.sp <= 1:
            raise NotImplementedError(
                "STLBootstrapTransformer does not support non-seasonal data")

        if not isinstance(self.sp, int):
            raise ValueError(
                "sp parameter of STLBootstrapTransformer must be an integer")

        if len(X) <= self.sp:
            raise ValueError(
                "STLBootstrapTransformer requires that sp is greater than"
                " the length of X")

        self.block_length_ = (self.block_length if self.block_length
                              is not None else min(self.sp * 2,
                                                   len(X) - self.sp))

        # fit boxcox to get lambda and transform X
        self.box_cox_transformer_ = BoxCoxTransformer(
            sp=self.sp, bounds=self.lambda_bounds, method=self.lambda_method)
        self.box_cox_transformer_.fit(X)

        return self
示例#7
0
    def get_test_params(cls):
        """Return testing parameter settings for the estimator.

        Returns
        -------
        params : dict or list of dict, default = {}
            Parameters to create testing instances of the class
            Each dict are parameters to construct an "interesting" test instance, i.e.,
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
            `create_test_instance` uses the first (or only) dictionary in `params`
        """
        from sktime.transformations.series.boxcox import BoxCoxTransformer

        return {"transformer": BoxCoxTransformer(), "passthrough": False}
示例#8
0
     "level": "local level"
 },
 PartialAutoCorrelationTransformer: {
     "n_lags": 1
 },
 AutoCorrelationTransformer: {
     "n_lags": 1
 },
 Imputer: {
     "method": "mean"
 },
 HampelFilter: {
     "window_length": 3
 },
 OptionalPassthrough: {
     "transformer": BoxCoxTransformer(),
     "passthrough": False
 },
 FeatureSelection: {
     "method": "all"
 },
 ColumnwiseTransformer: {
     "transformer": Detrender()
 },
 AggrDist: {
     "transformer": ScipyDist()
 },
 PyODAnnotator: {
     "estimator": ANOMALY_DETECTOR
 },
 ClaSPSegmentation: {
示例#9
0
def test_lambda_bounds(bounds, method, sp):
    y = load_airline()
    t = BoxCoxTransformer(bounds=bounds, method=method, sp=sp)
    t.fit(y)
    assert bounds[0] < t.lambda_ < bounds[1]
示例#10
0
class STLBootstrapTransformer(BaseTransformer):
    """Creates a population of similar time series.

    This method utilises a form of bootstrapping to generate a population of
    similar time series to the input time series [1]_, [2]_.

    First the observed time series is transformed using a Box-Cox transformation to
    stabilise the variance. Then it's decomposed to seasonal, trend and residual
    time series, using the STL implementation from statsmodels
    (``statsmodels.tsa.api.STL``) [4]_. We then sample blocks from the residuals time
    series using the Moving Block Bootstrapping (MBB) method [3]_ to create synthetic
    residuals series that mimic the autocorrelation patterns of the observed series.
    Finally these bootstrapped residuals are added to the season and trend components
    and we use the inverse Box-Cox transform to return a panel of similar time series.
    The output can be used for bagging forecasts, prediction intervals and data
    augmentation.

    The returned panel will be a multiindex dataframe (``pd.DataFrame``) with the
    series_id and time_index as the index and a single column of the time series value.
    The values for series_id are "actual" for the original series and "synthetic_n"
    (where n is an integer) for the generated series.
    See the **Examples** section for example output.

    Parameters
    ----------
    n_series : int, optional
        The number of bootstraped time series that will be generated, by default 10.
    sp : int, optional
        Seasonal periodicity of the data in integer form, by default 12.
        Must be an integer >= 2
    block_length : int, optional
        The length of the block in the MBB method, by default None.
        If not provided, the following heuristic is used, the block length will the
        minimum between 2*sp and len(X) - sp.
    sampling_replacement : bool, optional
        Whether the MBB sample is with or without replacement, by default False.
    return_actual : bool, optional
        If True the output will contain the actual time series, by default True.
        The actual time series will be labelled as "<series_name>_actual" (or "actual"
        if series name is None).
    lambda_bounds : Tuple, optional
        BoxCox parameter:
        Lower and upper bounds used to restrict the feasible range
        when solving for the value of lambda, by default None.
    lambda_method : str, optional
        BoxCox parameter:
        {"pearsonr", "mle", "all", "guerrero"}, by default "guerrero".
        The optimization approach used to determine the lambda value used
        in the Box-Cox transformation.
    seasonal : int, optional
        STL parameter:
        Length of the seasonal smoother. Must be an odd integer, and should
        normally be >= 7, by default 7.
    trend : int, optional
        STL parameter:
        Length of the trend smoother, by default None.
        Must be an odd integer. If not provided uses the smallest odd integer greater
        than 1.5 * period / (1 - 1.5 / seasonal), following the suggestion in the
        original implementation.
    low_pass : int, optional
        STL parameter:
        Length of the low-pass filter, by default None.
        Must be an odd integer >=3. If not provided, uses the smallest odd
        integer > period
    seasonal_deg : int, optional
        STL parameter:
        Degree of seasonal LOESS. 0 (constant) or 1 (constant and trend), by default 1.
    trend_deg : int, optional
        STL parameter:
        Degree of trend LOESS. 0 (constant) or 1 (constant and trend), by default 1.
    low_pass_deg : int, optional
        STL parameter:
        Degree of low pass LOESS. 0 (constant) or 1 (constant and trend), by default 1.
    robust : bool, optional
        STL parameter:
        Flag indicating whether to use a weighted version that is robust to
        some forms of outliers, by default False.
    seasonal_jump : int, optional
        STL parameter:
        Positive integer determining the linear interpolation step, by default 1.
        If larger than 1, the LOESS is used every seasonal_jump points and linear
        interpolation is between fitted points. Higher values reduce estimation time.
    trend_jump : int, optional
        STL parameter:
        Positive integer determining the linear interpolation step, by default 1.
        If larger than 1, the LOESS is used every trend_jump points and values between
        the two are linearly interpolated. Higher values reduce estimation time.
    low_pass_jump : int, optional
        STL parameter:
        Positive integer determining the linear interpolation step, by default 1.
        If larger than 1, the LOESS is used every low_pass_jump points and values
        between the two are linearly interpolated. Higher values reduce estimation
        time.
    inner_iter : int, optional
        STL parameter:
        Number of iterations to perform in the inner loop, by default None.
        If not provided uses 2 if robust is True, or 5 if not. This param goes into
        STL.fit() from statsmodels.
    outer_iter : int, optional
        STL parameter:
        Number of iterations to perform in the outer loop, by default None.
        If not provided uses 15 if robust is True, or 0 if not.
        This param goes into STL.fit() from statsmodels.
    random_state : int, np.random.RandomState or None, by default None
        Controls the randomness of the estimator

    See Also
    --------
    sktime.transformations.bootstrap.MovingBlockBootstrapTransformer :
        Transofrmer that applies the Moving Block Bootstrapping method to create
        a panel of synthetic time series.

    References
    ----------
    .. [1] Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential
        smoothing methods using STL decomposition and Box-Cox transformation.
        International Journal of Forecasting, 32(2), 303-312
    .. [2] Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and
        practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3,
        Chapter 12.5. Accessed on February 13th 2022.
    .. [3] Kunsch HR (1989) The jackknife and the bootstrap for general stationary
        observations. Annals of Statistics 17(3), 1217-1241
    .. [4] https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

    Examples
    --------
    >>> from sktime.transformations.bootstrap import STLBootstrapTransformer
    >>> from sktime.datasets import load_airline
    >>> from sktime.utils.plotting import plot_series
    >>> y = load_airline()
    >>> transformer = STLBootstrapTransformer(10)
    >>> y_hat = transformer.fit_transform(y)
    >>> series_list = []
    >>> names = []
    >>> for group, series in y_hat.groupby(level=[0], as_index=False):
    ...     series.index = series.index.droplevel(0)
    ...     series_list.append(series)
    ...     names.append(group)
    >>> plot_series(*series_list, labels=names)
    (...)
    >>> print(y_hat.head()) # doctest: +NORMALIZE_WHITESPACE
                          Number of airline passengers
    series_id time_index
    actual    1949-01                            112.0
              1949-02                            118.0
              1949-03                            132.0
              1949-04                            129.0
              1949-05                            121.0
    """

    _tags = {
        # todo: what is the scitype of X: Series, or Panel
        "scitype:transform-input": "Series",
        # todo: what scitype is returned: Primitives, Series, Panel
        "scitype:transform-output": "Panel",
        # todo: what is the scitype of y: None (not needed), Primitives, Series, Panel
        "scitype:transform-labels": "None",
        "scitype:instancewise": True,  # is this an instance-wise transform?
        "X_inner_mtype":
        "pd.Series",  # which mtypes do _fit/_predict support for X?
        # X_inner_mtype can be Panel mtype even if transform-input is Series, vectorized
        "y_inner_mtype":
        "None",  # which mtypes do _fit/_predict support for y?
        "capability:inverse_transform": False,
        "skip-inverse-transform":
        True,  # is inverse-transform skipped when called?
        "univariate-only": True,  # can the transformer handle multivariate X?
        "handles-missing-data": False,  # can estimator handle missing data?
        "X-y-must-have-same-index":
        False,  # can estimator handle different X/y index?
        "enforce_index_type":
        None,  # index type that needs to be enforced in X/y
        "fit_is_empty": False,  # is fit empty and can be skipped? Yes = True
        "transform-returns-same-time-index": False,
    }

    def __init__(
        self,
        n_series: int = 10,
        sp: int = 12,
        block_length: int = None,
        sampling_replacement: bool = False,
        return_actual: bool = True,
        lambda_bounds: Tuple = None,
        lambda_method: str = "guerrero",
        seasonal: int = 7,
        trend: int = None,
        low_pass: int = None,
        seasonal_deg: int = 1,
        trend_deg: int = 1,
        low_pass_deg: int = 1,
        robust: bool = False,
        seasonal_jump: int = 1,
        trend_jump: int = 1,
        low_pass_jump: int = 1,
        inner_iter: int = None,
        outer_iter: int = None,
        random_state: Union[int, np.random.RandomState] = None,
    ):
        self.n_series = n_series
        self.sp = sp
        self.block_length = block_length
        self.sampling_replacement = sampling_replacement
        self.return_actual = return_actual
        self.lambda_bounds = lambda_bounds
        self.lambda_method = lambda_method
        self.seasonal = seasonal
        self.trend = trend
        self.low_pass = low_pass
        self.seasonal_deg = seasonal_deg
        self.trend_deg = trend_deg
        self.low_pass_deg = low_pass_deg
        self.robust = robust
        self.seasonal_jump = seasonal_jump
        self.trend_jump = trend_jump
        self.low_pass_jump = low_pass_jump
        self.inner_iter = inner_iter
        self.outer_iter = outer_iter
        self.random_state = random_state

        super(STLBootstrapTransformer, self).__init__()

    def _fit(self, X, y=None):
        """Fit transformer to X and y.

        private _fit containing the core logic, called from fit

        Parameters
        ----------
        X : pd.Series
            Data to be transformed
        y : ignored, for interface compatibility

        Returns
        -------
        self: reference to self
        """
        if self.sp <= 1:
            raise NotImplementedError(
                "STLBootstrapTransformer does not support non-seasonal data")

        if not isinstance(self.sp, int):
            raise ValueError(
                "sp parameter of STLBootstrapTransformer must be an integer")

        if len(X) <= self.sp:
            raise ValueError(
                "STLBootstrapTransformer requires that sp is greater than"
                " the length of X")

        self.block_length_ = (self.block_length if self.block_length
                              is not None else min(self.sp * 2,
                                                   len(X) - self.sp))

        # fit boxcox to get lambda and transform X
        self.box_cox_transformer_ = BoxCoxTransformer(
            sp=self.sp, bounds=self.lambda_bounds, method=self.lambda_method)
        self.box_cox_transformer_.fit(X)

        return self

    def _transform(self, X, y=None):
        """Transform X and return a transformed version.

        private _transform containing core logic, called from transform

        Parameters
        ----------
        X : pd.Series
            Data to be transformed
        y : ignored, for interface compatibility

        Returns
        -------
        transformed version of X
        """
        if len(X) <= self.block_length_:
            raise ValueError(
                "STLBootstrapTransformer requires that block_length is"
                " strictly smaller than the length of X")

        X_index = X.index
        X_transformed = self.box_cox_transformer_.transform(X)

        # fit STL on X_transformed series and extract trend, seasonal and residuals
        stl = _STL(
            X_transformed,
            period=self.sp,
            seasonal=self.seasonal,
            trend=self.trend,
            low_pass=self.low_pass,
            seasonal_deg=self.seasonal_deg,
            trend_deg=self.trend_deg,
            low_pass_deg=self.low_pass_deg,
            robust=self.robust,
            seasonal_jump=self.seasonal_jump,
            trend_jump=self.trend_jump,
            low_pass_jump=self.low_pass_jump,
        ).fit(inner_iter=self.inner_iter, outer_iter=self.outer_iter)
        seasonal = pd.Series(stl.seasonal, index=X_index)
        resid = pd.Series(stl.resid, index=X_index)
        trend = pd.Series(stl.trend, index=X_index)

        # time series id prefix
        col_name = _get_series_name(X)

        # initialize the dataframe that will store the bootstrapped series
        if self.return_actual:
            df_list = [
                pd.DataFrame(
                    X.values,
                    index=pd.MultiIndex.from_product(
                        iterables=[["actual"], X_index],
                        names=["series_id", "time_index"],
                    ),
                    columns=[col_name],
                )
            ]
        else:
            df_list = []

        # set the random state
        rng = check_random_state(self.random_state)
        # create multiple series
        for i in range(self.n_series):
            new_series = self.box_cox_transformer_.inverse_transform(
                _moving_block_bootstrap(
                    ts=resid,
                    block_length=self.block_length_,
                    replacement=self.sampling_replacement,
                    random_state=rng,
                ) + seasonal + trend)

            new_series_id = f"synthetic_{i}"
            new_df_index = pd.MultiIndex.from_product(
                iterables=[[new_series_id], new_series.index],
                names=["series_id", "time_index"],
            )

            df_list.append(
                pd.DataFrame(data=new_series.values,
                             index=new_df_index,
                             columns=[col_name]))

        return pd.concat(df_list)

    @classmethod
    def get_test_params(cls, parameter_set="default"):
        """Return testing parameter settings for the estimator.

        Parameters
        ----------
        parameter_set : str, default="default"
            Name of the set of test parameters to return, for use in tests. If no
            special parameters are defined for a value, will return `"default"` set.


        Returns
        -------
        params : dict or list of dict, default = {}
            Parameters to create testing instances of the class
            Each dict are parameters to construct an "interesting" test instance, i.e.,
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
            `create_test_instance` uses the first (or only) dictionary in `params`
        """
        params = [
            {
                "sp": 3
            },
            {
                "block_length": 1,
                "sp": 3
            },
            {
                "return_actual": False,
                "sp": 3
            },
            {
                "sampling_replacement": True,
                "sp": 3
            },
        ]

        return params
示例#11
0
        "use_arma_errors": False,
        "n_jobs": 1,
    },
    Prophet: {
        "n_changepoints": 0,
        "yearly_seasonality": False,
        "weekly_seasonality": False,
        "daily_seasonality": False,
        "uncertainty_samples": 1000,
        "verbose": False,
    },
    PartialAutoCorrelationTransformer: {"n_lags": 1},
    AutoCorrelationTransformer: {"n_lags": 1},
    Imputer: {"method": "mean"},
    HampelFilter: {"window_length": 3},
    OptionalPassthrough: {"transformer": BoxCoxTransformer(), "passthrough": True},
}

# We use estimator tags in addition to class hierarchies to further distinguish
# estimators into different categories. This is useful for defining and running
# common tests for estimators with the same tags.
VALID_ESTIMATOR_TAGS = (
    "fit-in-transform",  # fitted in transform or non-fittable
    "univariate-only",
    "transform-returns-same-time-index",
    "handles-missing-data",
    "skip-inverse-transform",
)

# These methods should not change the state of the estimator, that is, they should
# not change fitted parameters or hyper-parameters. They are also the methods that