# mc = datatest_stack.MC() # extra=datatest_stack.extra() # dpsi=extra["dpsi"] # print llh ##Okay, so the following is the part where we need to split this up into parallel processing. I think the pertinant variable to use here is n_iter... let's test a background scramble with n_iter=5 to see how fast it goes. Though, maybe it's max_iter? check with previously pickled results to see which number of bckg trials we got. #bckg_trials_flux = PointSourceLLH.background_scrambles(llh_flux,src_ra,src_dec,alpha=0.5, maxiter=batchsize) ## And let's also cache bckg_trials for the other weighting schemes. ## # bckg_trials_flux = PointSourceLLH.background_scrambles(llh_flux, src_ra, src_dec, alpha=0.5, maxiter=batchsize) # # #def get_redshift_bckg_trials(): # return PointSourceLLH.background_scrambles(llh_redshift,src_ra,src_dec,alpha=0.5) # #bckg_trials_redshift = cache.get (datafolder + 'SwiftBAT70m/pickle/bckg_trials_redshift.pickle', get_redshift_bckg_trials) # ##This one's gonna work a little differently than the single source sensitivity. First off, we need to calculate the background scrambles ahead of time, with the definition provided in psLLH_stack.py. I'll try to do this all within the same function:## ## Background Trials have the following keys:## ##['beta', 'TS_beta', 'beta_err', 'n_inj', 'nsources', 'TS', 'gamma']## ## Let's use a uniform weight (none) first to yield our bckg trials. ##
#bckg_trials_uniform = PointSourceLLH.background_scrambles(llh_uniform,src_ra,src_dec,alpha=0.5, maxiter=batchsize) ## And let's also cache bckg_trials for the other weighting schemes. ## # #def get_flux_bckg_trials(): # return PointSourceLLH.background_scrambles(llh_flux,src_ra,src_dec,alpha=0.5) # #bckg_trials_flux = cache.get (datafolder + 'SwiftBAT70m/pickle/bckg_trials_flux.pickle', get_flux_bckg_trials) # # # bckg_trials_redshift = PointSourceLLH.background_scrambles(llh_redshift, src_ra, src_dec, alpha=0.5, maxiter=batchsize) # ##This one's gonna work a little differently than the single source sensitivity. First off, we need to calculate the background scrambles ahead of time, with the definition provided in psLLH_stack.py. I'll try to do this all within the same function:## ## Background Trials have the following keys:## ##['beta', 'TS_beta', 'beta_err', 'n_inj', 'nsources', 'TS', 'gamma']## ## Let's use a uniform weight (none) first to yield our bckg trials. ## #choose an output dir, and make sure it exists this_dir = os.path.dirname(os.path.abspath(__file__)) out_dir = misc.ensure_dir( '/data/user/brelethford/Output/stacking_sensitivity/SwiftBAT70m/redshift/background_trials/' )
params['redshift'][6]], [params['flux'][0], params['flux'][6]] print('my sources are at declination(s):') ## There are three modelweights I can use, so lets put them in a dictionary for easy access. ## modelweights = {'flux': flux, 'redshift': list(np.power(redshift, -2))} import data_box ## We'll assign the proper weighting scheme for the search, then use it to calculate and cache the associated bckg trials: ## llhmodel = data_box.init(energy=True, weighting=modelweights['flux']) bckg_trials = PointSourceLLH.background_scrambles(llhmodel, src_ra, src_dec, alpha=0.5, maxiter=30000) print(bckg_trials['TS']) #choose an output dir, and make sure it exists this_dir = os.path.dirname(os.path.abspath(__file__)) out_dir = misc.ensure_dir( '/data/user/brelethford/Output/stacking_sensitivity/SwiftBAT70m/northsouth_one_bckg/{}/background_trials/' .format(sky)) # save the output outfile = out_dir + 'background_box.array' print 'Saving', outfile, '...' cache.save(bckg_trials, outfile)
dec_deg = np.arcsin(opts.dec) * 180. / np.pi src_ra = [0.0] src_dec = [np.radians(opts.dec)] batch = opts.batch batchsize = opts.batchsize import datatest_stack_bins llh_uniform = datatest_stack_bins.init(energy=False) ##Okay, so the following is the part where we need to split this up into parallel processing. I think the pertinant variable to use here is n_iter... let's test a background scramble with n_iter=5 to see how fast it goes. Though, maybe it's max_iter? check with previously pickled results to see which number of bckg trials we got. bckg_trials_single = PointSourceLLH.background_scrambles(llh_uniform, src_ra, src_dec, alpha=0.5, maxiter=batchsize) ## Background Trials have the following keys:## ##['beta', 'TS_beta', 'beta_err', 'n_inj', 'nsources', 'TS', 'gamma']## ## Let's use a uniform weight (none) first to yield our bckg trials. ## #choose an output dir, and make sure it exists this_dir = os.path.dirname(os.path.abspath(__file__)) out_dir = misc.ensure_dir( '/data/user/brelethford/Output/all_sky_sensitivity/results/single_stacked/no_energy/dec{0:+010.5}/' .format(dec_deg)) # save the output outfile = out_dir + 'background_dec_{0:+010.5}_batch_{1:03}.array'.format(