def testMobilenetBase(self): tf.reset_default_graph() # Verifies that mobilenet_base returns pre-pooling layer. with slim.arg_scope((mobilenet.depth_multiplier, ), min_depth=32): net, _ = mobilenet_v2.mobilenet_base(tf.placeholder( tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.1) self.assertEqual(net.get_shape().as_list(), [10, 7, 7, 128])
def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) feature_map_layout = { 'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''][:self._num_layers], 'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers], 'use_depthwise': self._use_depthwise, 'use_explicit_padding': self._use_explicit_padding, } with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \ slim.arg_scope( [mobilenet.depth_multiplier], min_depth=self._min_depth): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v2.mobilenet_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='layer_19', depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
def _mobilenet_v2(net, depth_multiplier, output_stride, conv_defs=None, divisible_by=None, reuse=None, scope=None, final_endpoint=None): """Auxiliary function to add support for 'reuse' to mobilenet_v2. Args: net: Input tensor of shape [batch_size, height, width, channels]. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. output_stride: An integer that specifies the requested ratio of input to output spatial resolution. If not None, then we invoke atrous convolution if necessary to prevent the network from reducing the spatial resolution of the activation maps. Allowed values are 8 (accurate fully convolutional mode), 16 (fast fully convolutional mode), 32 (classification mode). conv_defs: MobileNet con def. divisible_by: None (use default setting) or an integer that ensures all layers # channels will be divisible by this number. Used in MobileNet. reuse: Reuse model variables. scope: Optional variable scope. final_endpoint: The endpoint to construct the network up to. Returns: Features extracted by MobileNetv2. """ if divisible_by is None: divisible_by = 8 if depth_multiplier == 1.0 else 1 if conv_defs is None: conv_defs = mobilenet_v2.V2_DEF with tf.variable_scope(scope, 'MobilenetV2', [net], reuse=reuse) as scope: return mobilenet_v2.mobilenet_base( net, conv_defs=conv_defs, depth_multiplier=depth_multiplier, min_depth=8 if depth_multiplier == 1.0 else 1, divisible_by=divisible_by, final_endpoint=final_endpoint or _MOBILENET_V2_FINAL_ENDPOINT, output_stride=output_stride, scope=scope)
def encode(self, input_tensor, name): """ 根据vgg16框架对输入的tensor进行编码 :param input_tensor: :param name: :param flags: :return: 输出vgg16编码特征 """ # print(self._phase) # model_path = '/logs/' # input_tensor = tf.Print(input_tensor, [tf.reduce_sum(tf.to_int32(tf.is_nan(input_tensor))) > 0], # message="input_tensor") with slim.arg_scope(mobilenet_v2.training_scope(is_training=self._is_training)): logits, endpoints = mobilenet_v2.mobilenet_base( input_tensor=input_tensor, is_training=self._is_training) ret = OrderedDict() ret['layer_7'] = dict() # asymetric_7 = self.conv2d(inputdata=endpoints["layer_7"], out_channel=32, # kernel_size=[3, 1], use_bias=False, name='asymetric_7') ret['layer_7']['data'] = endpoints["layer_7"] ret['layer_7']['shape'] = endpoints["layer_7"].get_shape().as_list() ret['layer_14'] = dict() # asymetric_14 = self.conv2d(inputdata=endpoints["layer_14"], out_channel=96, # kernel_size=[3, 1], use_bias=False, name='asymetric_14') ret['layer_14']['data'] = endpoints["layer_14"] ret['layer_14']['shape'] = endpoints["layer_14"].get_shape().as_list() ret['layer_18'] = dict() # asymetric_19 = self.conv2d(inputdata=endpoints["layer_19"], out_channel=1280, # kernel_size=[3, 1], use_bias=False, name='asymetric_19') ret['layer_18']['data'] = endpoints["layer_18"] ret['layer_18']['shape'] = endpoints["layer_18"].get_shape().as_list() return ret
def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \ slim.arg_scope( [mobilenet.depth_multiplier], min_depth=self._min_depth): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v2.mobilenet_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='layer_19', depth_multiplier=self._depth_multiplier, conv_defs=self._conv_defs, use_explicit_padding=self._use_explicit_padding, scope=scope) depth_fn = lambda d: max(int(d * self._depth_multiplier), self. _min_depth) with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope('fpn', reuse=self._reuse_weights): feature_blocks = [ 'layer_4', 'layer_7', 'layer_14', 'layer_19' ] base_fpn_max_level = min(self._fpn_max_level, 5) feature_block_list = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_block_list.append(feature_blocks[level - 2]) fpn_features = feature_map_generators.fpn_top_down_feature_maps( [(key, image_features[key]) for key in feature_block_list], depth=depth_fn(self._additional_layer_depth), use_depthwise=self._use_depthwise, use_explicit_padding=self._use_explicit_padding) feature_maps = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_maps.append(fpn_features['top_down_{}'.format( feature_blocks[level - 2])]) last_feature_map = fpn_features['top_down_{}'.format( feature_blocks[base_fpn_max_level - 2])] # Construct coarse features padding = 'VALID' if self._use_explicit_padding else 'SAME' kernel_size = 3 for i in range(base_fpn_max_level + 1, self._fpn_max_level + 1): if self._use_depthwise: conv_op = functools.partial(slim.separable_conv2d, depth_multiplier=1) else: conv_op = slim.conv2d if self._use_explicit_padding: last_feature_map = ops.fixed_padding( last_feature_map, kernel_size) last_feature_map = conv_op( last_feature_map, num_outputs=depth_fn(self._additional_layer_depth), kernel_size=[kernel_size, kernel_size], stride=2, padding=padding, scope='bottom_up_Conv2d_{}'.format( i - base_fpn_max_level + 19)) feature_maps.append(last_feature_map) return feature_maps