def testAllEndPointsShapesMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes) endpoints_shapes = { 'Stem': [batch_size, 28, 28, 135], 'Cell_0': [batch_size, 28, 28, 270], 'Cell_1': [batch_size, 28, 28, 270], 'Cell_2': [batch_size, 28, 28, 270], 'Cell_3': [batch_size, 14, 14, 540], 'Cell_4': [batch_size, 14, 14, 540], 'Cell_5': [batch_size, 14, 14, 540], 'Cell_6': [batch_size, 7, 7, 1080], 'Cell_7': [batch_size, 7, 7, 1080], 'Cell_8': [batch_size, 7, 7, 1080], 'global_pool': [batch_size, 1080], # Logits and predictions 'AuxLogits': [batch_size, num_classes], 'Predictions': [batch_size, num_classes], 'Logits': [batch_size, num_classes], } self.assertEqual(len(end_points), 14) self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: tf.logging.info('Endpoint name: {}'.format(endpoint_name)) expected_shape = endpoints_shapes[endpoint_name] self.assertIn(endpoint_name, end_points) self.assertListEqual( end_points[endpoint_name].get_shape().as_list(), expected_shape)
def testBuildNonExistingLayerMobileModel(self): """Tests that the model is built correctly without unnecessary layers.""" inputs = tf.random_uniform((5, 224, 224, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): pnasnet.build_pnasnet_mobile(inputs, 1000) vars_names = [x.op.name for x in tf.trainable_variables()] self.assertIn('cell_stem_0/1x1/weights', vars_names) self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names)
def testBuildPreLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): net, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes) self.assertFalse('AuxLogits' in end_points) self.assertFalse('Predictions' in end_points) self.assertTrue(net.op.name.startswith('final_layer/Mean')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1080])
def testOverrideHParamsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = pnasnet.mobile_imagenet_config() config.set_hparam('data_format', 'NCHW') with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes, config=config) self.assertListEqual(end_points['Stem'].shape.as_list(), [batch_size, 135, 28, 28])
def testNoAuxHeadMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 for use_aux_head in (True, False): tf.reset_default_graph() inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = pnasnet.mobile_imagenet_config() config.set_hparam('use_aux_head', int(use_aux_head)) with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes, config=config) self.assertEqual('AuxLogits' in end_points, use_aux_head)
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): logits, end_points = pnasnet.build_pnasnet_mobile( inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
def testUseBoundedAcitvationMobileModel(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 for use_bounded_activation in (True, False): tf.reset_default_graph() inputs = tf.random_uniform((batch_size, height, width, 3)) config = pnasnet.mobile_imagenet_config() config.set_hparam('use_bounded_activation', use_bounded_activation) with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, _ = pnasnet.build_pnasnet_mobile(inputs, num_classes, config=config) for node in tf.get_default_graph().as_graph_def().node: if node.op.startswith('Relu'): self.assertEqual(node.op == 'Relu6', use_bounded_activation)