示例#1
0
def plot_both_things(sol, masses, plot_times, cell_start, cell_end, eps, y0,
                     y1, gridpoints, title, save_location, T):
    fig, (ax1, ax2) = plt.subplots(1, 2)
    ax1.set_xlabel('time')
    ax1.set_ylabel('position')
    ax2.set_xlabel('position')
    ax2.set_ylabel('density')
    ax1.set_title('particle trajectories colored by mass')
    ax2.set_title('profiles colored by timestep')
    fig.suptitle(title)
    t = sol['t']
    traj = sol['y']

    cmap = plt.get_cmap('jet')
    cNorm = colors.Normalize(vmin=0, vmax=max(masses))
    ScalarMap1 = cmx.ScalarMappable(norm=cNorm, cmap=cmap)
    for i in range(len(masses)):
        linecolor = ScalarMap1.to_rgba(masses[i])
        ax1.plot(t, traj[i], color=linecolor)
    ax1.plot([0, 0], [y0, y1], 'ro')
    ax3 = fig.add_axes([0.01, 0.12, 0.02, 0.7])
    cb = matplotlib.colorbar.ColorbarBase(ax3, cmap=cmap, norm=cNorm)

    cNorm = colors.Normalize(vmin=0, vmax=T)
    ScalarMap2 = cmx.ScalarMappable(norm=cNorm, cmap=cmap)

    grid = np.linspace(
        np.min(np.array(sol['y'])) - .1,
        np.max(np.array(sol['y'])) + .1, gridpoints)
    for i in plot_times:
        particles = sol['y'][:, i]
        profile = blob(particles, grid, masses, eps)
        true_time = (T / (max(plot_times) - 1)) * i
        linecolor = ScalarMap2.to_rgba(true_time)
        ax2.plot(grid, profile, color=linecolor)
    ax2.plot([y0, y1], [0, 0], 'ro')
    ax4 = fig.add_axes([0.94, 0.15, 0.02, 0.7])
    cb = matplotlib.colorbar.ColorbarBase(ax4, cmap=cmap, norm=cNorm)
    mng = plt.get_current_fig_manager()
    mng.full_screen_toggle()
    fig.set_size_inches((10, 5), forward=False)
    fig.savefig(save_location + '.png', dpi=500)

    return fig
示例#2
0
def compute_and_plot_profiles(sol, masses, plot_times,  cell_start, cell_end,eps,y0,y1,gridpoints, title):
    cmap = plt.get_cmap('viridis')
    fig, ax = plt.subplots(figsize = (7,5))
    ax.set_title(title)
    ax.set_xlabel('position')
    ax.set_ylabel('density')
    cNorm = colors.Normalize(vmin = 0, vmax = max(plot_times))
    ScalarMap = cmx.ScalarMappable(norm = cNorm, cmap = cmap)
    grid = np.linspace(cell_start, cell_end, gridpoints)
    for i in plot_times:
        particles = sol['y'][:,i]
        profile = blob(particles, grid, masses, eps)
        linecolor = ScalarMap.to_rgba(i)
        ax.plot(grid, profile, color = linecolor)
    ax.plot([y0,y1],[0,0],'ro')

    ax2 = fig.add_axes([0.94,0.1,0.02,0.7])
    cb = matplotlib.colorbar.ColorbarBase(ax2, cmap=cmap, norm=cNorm)
    plt.savefig(title)
示例#3
0
def plot_four_profiles(x_label, y_label, sol_dict_path, param_dict_path, plot_number, title, param_set = "drift", custom_params = None, save = False, save_path = None):
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, sharex = True, sharey = True)

    #ax1.set_xlabel('position')
    ax1.set_ylabel(y_label)
    #ax2.set_xlabel('position')
    #ax2.set_ylabel('density')
    ax3.set_xlabel(x_label)
    ax3.set_ylabel(y_label)
    ax4.set_xlabel(x_label)
    #ax4.set_ylabel('density')
    fig.suptitle(title)

    ax4_box = fig.axes[3].get_position()
    ax2_box = fig.axes[1].get_position()
    ax4_box.x1 = ax4_box.x1 - .04
    ax4_box.x0 = ax4_box.x0 - .04
    ax2_box.x1 = ax2_box.x1 - .04
    ax2_box.x0 = ax2_box.x0 - .04

    fig.axes[3].set_position(ax4_box)
    fig.axes[1].set_position(ax2_box)

    if param_set == 'drift':
        param_1 = (10,5,1)
        param_2 = (10,1,5)
        param_3 = (10,1,1)
        param_4 = (10,5,5)

    elif param_set == 'interaction':
        param_1 = (5,10,1)
        param_2 = (1,10,5)
        param_3 = (1,10,1)
        param_4 = (5,10,5)

    else:
        param_1 = custom_params[0]
        param_2 = custom_params[1]
        param_3 = custom_params[2]
        param_4 = custom_params[3]


    ax1.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_1[0], param_1[1], param_1[2]), pad = 3)
    ax2.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_2[0], param_2[1], param_2[2]), pad = 3)
    ax3.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_3[0], param_3[1], param_3[2]), pad = 3)
    ax4.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_4[0], param_4[1], param_4[2]), pad = 3)

    sol_dict = pickle.load(open(sol_dict_path, "rb"))
    param_dict = pickle.load(open(param_dict_path, "rb"))
    sol_dict.keys()

    N = param_dict['N']
    masses = param_dict['M']
    eps = param_dict['eps']
    y0 = param_dict['y0']
    y1 = param_dict['y1']
    T = param_dict['T']

    sols = [sol_dict[param_1], sol_dict[param_2], sol_dict[param_3], sol_dict[param_4]]
    plot_times = [compute_even_plot_times(len(sol['t']), plot_number) for sol in sols]
    axess = [ax1, ax2, ax3, ax4]

    cmap = plt.get_cmap('viridis')
    cNorm = colors.Normalize(vmin = 0, vmax = T)
    ScalarMap = cmx.ScalarMappable(norm = cNorm, cmap = cmap)

    colorbar = fig.add_axes([0.90,0.15,0.02,0.7])
    colorbar.set_title('time')
    cb = matplotlib.colorbar.ColorbarBase(colorbar, cmap = cmap, norm = cNorm)


    for i in range(4):
        ax = axess[i]
        plot_time = plot_times[i]
        sol = sols[i]
        grid = np.linspace(-2.1, 2.1, 100)

        for i in plot_time:
            particles = sol['y'][:,i]
            profile = blob(particles, grid, masses, eps)
            true_time = (T / (max(plot_time) -1)) * i
            linecolor = ScalarMap.to_rgba(true_time)
            ax.plot(grid, profile, color = linecolor)
            ax.plot([y0,y1],[0,0],'ro')


    return fig
示例#4
0
def plot_six_profiles(x_label,
                      y_label,
                      sol_dict_path,
                      param_dict_path,
                      plot_number,
                      title,
                      moll_eps,
                      params=None):
    fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3,
                                                             2,
                                                             sharex=True,
                                                             sharey=True)

    #ax1.set_xlabel('position')
    ax1.set_ylabel(y_label)
    #ax2.set_xlabel('position')
    #ax2.set_ylabel('density')
    ax3.set_ylabel(y_label)
    ax5.set_ylabel(y_label)
    ax5.set_xlabel(x_label)
    ax6.set_xlabel(x_label)
    #ax4.set_ylabel('density')
    fig.suptitle(title)

    ax4_box = fig.axes[3].get_position()
    ax2_box = fig.axes[1].get_position()
    ax6_box = fig.axes[5].get_position()
    ax4_box.x1 = ax4_box.x1 - .04
    ax4_box.x0 = ax4_box.x0 - .04
    ax2_box.x1 = ax2_box.x1 - .04
    ax2_box.x0 = ax2_box.x0 - .04
    ax6_box.x1 = ax6_box.x1 - .04
    ax6_box.x0 = ax6_box.x0 - .04

    fig.axes[3].set_position(ax4_box)
    fig.axes[1].set_position(ax2_box)
    fig.axes[5].set_position(ax6_box)

    fig.set_figheight(fig.get_figheight() + fig.get_figheight() * .3)

    param_1 = params[0]
    param_2 = params[1]
    param_3 = params[2]
    param_4 = params[3]
    param_5 = params[4]
    param_6 = params[5]

    ax1.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_1[0], param_1[1],
                                                       param_1[2]),
                  pad=3)
    ax2.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_2[0], param_2[1],
                                                       param_2[2]),
                  pad=3)
    ax3.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_3[0], param_3[1],
                                                       param_3[2]),
                  pad=3)
    ax4.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_4[0], param_4[1],
                                                       param_4[2]),
                  pad=3)
    ax5.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_5[0], param_5[1],
                                                       param_5[2]),
                  pad=3)
    ax6.set_title('$A= {}$, $B ={} $, $C = {}$'.format(param_6[0], param_6[1],
                                                       param_6[2]),
                  pad=3)

    sol_dict = pickle.load(open(sol_dict_path, "rb"))
    param_dict = pickle.load(open(param_dict_path, "rb"))
    sol_dict.keys()

    N = param_dict['N']
    masses = param_dict['M']
    eps = param_dict['eps']
    y0 = param_dict['y0']
    y1 = param_dict['y1']
    T = param_dict['T']

    sols = [
        sol_dict[param_1], sol_dict[param_2], sol_dict[param_3],
        sol_dict[param_4], sol_dict[param_5], sol_dict[param_6]
    ]
    plot_times = [
        compute_even_plot_times(len(sol['t']), plot_number) for sol in sols
    ]
    axess = [ax1, ax2, ax3, ax4, ax5, ax6]

    cmap = plt.get_cmap('jet')
    cNorm = colors.Normalize(vmin=0, vmax=T)
    ScalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap)

    colorbar = fig.add_axes([0.90, 0.15, 0.02, 0.7])
    colorbar.set_title('time')
    cb = matplotlib.colorbar.ColorbarBase(colorbar, cmap=cmap, norm=cNorm)

    for i in range(6):
        ax = axess[i]
        plot_time = plot_times[i]
        sol = sols[i]
        grid = np.linspace(-2.1, 2.1, 100)

        for i in plot_time:
            particles = sol['y'][:, i]
            profile = blob(particles, grid, masses, moll_eps)
            true_time = (T / (max(plot_time) - 1)) * i
            linecolor = ScalarMap.to_rgba(true_time)
            ax.plot(grid, profile, color=linecolor)
            ax.plot([y0, y1], [0, 0], 'ro')

    return fig