if not os.path.exists(zoo_dir): raise Exception('zoo directory does not exist') # zoo directory must contain pretrained and extended models pretrained_dir = zoo_dir / "pretrained" extended_dir = zoo_dir / "extended" # Example: # reward_wrapper_dir = zoo_dir / "reward_wrapper" # Add the test agents you would like to evaluate to the test_agents dictionary { "model_name": "path/to/model"} # You may delete the existing ones in the test_agents dictionary (they are just examples) test_agents = { "baseline": BaselinePolicy(), "ppo": PPOPolicy(pretrained_dir / "ppo.zip"), "ppo_sp": PPOPolicy(pretrained_dir / "ppo_sp.zip"), "ga_sp": makeSlimePolicyLite(pretrained_dir / "ga_sp.json"), "random": RandomPolicy(), } if args.benchmark and not args.evaltest: pretrained_agents = { "baseline": BaselinePolicy(), "ppo": PPOPolicy(pretrained_dir / "ppo.zip"), "ppo_sp": PPOPolicy(pretrained_dir / "ppo_sp.zip"), "ga_sp": makeSlimePolicyLite(pretrained_dir / "ga_sp.json"), "random": RandomPolicy(), } extended_agents = { "ppo_extended": PPOPolicy(extended_dir / "ppo.zip"), "ppo_sp_extended": PPOPolicy(extended_dir / "ppo_sp.zip"),
if not os.path.exists(zoo_dir): raise Exception('zoo directory does not exist') # zoo directory must contain pretrained and extended models pretrained_dir = zoo_dir / "pretrained" extended_dir = zoo_dir / "extended" # Example: # reward_wrapper_dir = zoo_dir / "reward_wrapper" obs_small_always_dir = zoo_dir / "obs_small_always" # Add the test agents you would like to evaluate to the test_agents dictionary { "model_name": "path/to/model"} # You may delete the existing ones in the test_agents dictionary (they are just examples) test_agents = { "ppo": PPOPolicy(obs_small_always_dir / "ppo.zip"), "ppo_sp": PPOPolicy(obs_small_always_dir / "ppo_sp.zip"), "ga_sp": makeSlimePolicyLite(obs_small_always_dir / "ga_sp.json"), } if args.benchmark and not args.evaltest: pretrained_agents = { "baseline": BaselinePolicy(), "ppo": PPOPolicy(pretrained_dir / "ppo.zip"), "ppo_sp": PPOPolicy(pretrained_dir / "ppo_sp.zip"), "ga_sp": makeSlimePolicyLite(pretrained_dir / "ga_sp.json"), "random": RandomPolicy(), } extended_agents = { "ppo_extended": PPOPolicy(extended_dir / "ppo.zip"), "ppo_sp_extended": PPOPolicy(extended_dir / "ppo_sp.zip"), "ga_sp_extended": makeSlimePolicyLite(extended_dir / "ga_sp.json"),
pretrained_dir = zoo_dir / "pretrained" extended_dir = zoo_dir / "extended" # Example: # reward_wrapper_dir = zoo_dir / "reward_wrapper" spike_dir = zoo_dir / "spike" arc_dir = zoo_dir / "arc" # Add the test agents you would like to evaluate to the test_agents dictionary { "model_name": "path/to/model"} # You may delete the existing ones in the test_agents dictionary (they are just examples) test_agents_1 = { "ppo_spike_best": PPOPolicy(spike_dir / "ppo_best.zip"), "ppo_sp_spike_best": PPOPolicy(spike_dir / "ppo_sp_best.zip"), "ppo_spike_final": PPOPolicy(spike_dir / "ppo_final.zip"), "ppo_sp_spike_final": PPOPolicy(spike_dir / "ppo_sp_final.zip"), "ga_sp_spike": makeSlimePolicyLite(spike_dir / "ga_sp.json"), } test_agents_2 = { "ppo_arc_best": PPOPolicy(arc_dir / "ppo_best.zip"), "ppo_sp_arc_best": PPOPolicy(arc_dir / "ppo_sp_best.zip"), "ppo_arc_final": PPOPolicy(arc_dir / "ppo_final.zip"), "ppo_sp_arc_final": PPOPolicy(arc_dir / "ppo_sp_final.zip"), "ga_sp_arc": makeSlimePolicyLite(arc_dir / "ga_sp.json"), } if args.benchmark and not args.evaltest: pretrained_agents = { "baseline": BaselinePolicy(), "ppo": PPOPolicy(pretrained_dir / "ppo.zip"), "ppo_sp": PPOPolicy(pretrained_dir / "ppo_sp.zip"),