示例#1
0
    def testRaiseValueErrorWithInvalidDepthMultiplier(self):
        batch_size = 5
        height, width = 224, 224
        num_classes = 1000

        inputs = tf.random_uniform((batch_size, height, width, 3))
        with self.assertRaises(ValueError):
            _ = mobilenet_v1.mobilenet_v1(inputs,
                                          num_classes,
                                          depth_multiplier=-0.1)
        with self.assertRaises(ValueError):
            _ = mobilenet_v1.mobilenet_v1(inputs,
                                          num_classes,
                                          depth_multiplier=0.0)
示例#2
0
def build_model():
    """Build the mobilenet_v1 model for evaluation.

  Returns:
    g: graph with rewrites after insertion of quantization ops and batch norm
    folding.
    eval_ops: eval ops for inference.
    variables_to_restore: List of variables to restore from checkpoint.
  """
    g = tf.Graph()
    with g.as_default():
        inputs, labels = imagenet_input(is_training=False)

        scope = mobilenet_v1.mobilenet_v1_arg_scope(is_training=False,
                                                    weight_decay=0.0)
        with slim.arg_scope(scope):
            logits, _ = mobilenet_v1.mobilenet_v1(
                inputs,
                is_training=False,
                depth_multiplier=FLAGS.depth_multiplier,
                num_classes=FLAGS.num_classes)

        if FLAGS.quantize:
            tf.contrib.quantize.create_eval_graph()

        eval_ops = metrics(logits, labels)

    return g, eval_ops
示例#3
0
    def testTrainEvalWithReuse(self):
        train_batch_size = 5
        eval_batch_size = 2
        height, width = 150, 150
        num_classes = 1000

        train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
        mobilenet_v1.mobilenet_v1(train_inputs, num_classes)
        eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
        logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs,
                                              num_classes,
                                              reuse=True)
        predictions = tf.argmax(logits, 1)

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            output = sess.run(predictions)
            self.assertEquals(output.shape, (eval_batch_size, ))
示例#4
0
    def testLogitsNotSqueezed(self):
        num_classes = 25
        images = tf.random_uniform([1, 224, 224, 3])
        logits, _ = mobilenet_v1.mobilenet_v1(images,
                                              num_classes=num_classes,
                                              spatial_squeeze=False)

        with self.test_session() as sess:
            tf.global_variables_initializer().run()
            logits_out = sess.run(logits)
            self.assertListEqual(list(logits_out.shape),
                                 [1, 1, 1, num_classes])
示例#5
0
    def testBuildPreLogitsNetwork(self):
        batch_size = 5
        height, width = 224, 224
        num_classes = None

        inputs = tf.random_uniform((batch_size, height, width, 3))
        net, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
        self.assertTrue(net.op.name.startswith('MobilenetV1/Logits/AvgPool'))
        self.assertListEqual(net.get_shape().as_list(),
                             [batch_size, 1, 1, 1024])
        self.assertFalse('Logits' in end_points)
        self.assertFalse('Predictions' in end_points)
示例#6
0
    def testHalfSizeImages(self):
        batch_size = 5
        height, width = 112, 112
        num_classes = 1000

        inputs = tf.random_uniform((batch_size, height, width, 3))
        logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
        self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits'))
        self.assertListEqual(logits.get_shape().as_list(),
                             [batch_size, num_classes])
        pre_pool = end_points['Conv2d_13_pointwise']
        self.assertListEqual(pre_pool.get_shape().as_list(),
                             [batch_size, 4, 4, 1024])
示例#7
0
    def testBuildEndPointsWithDepthMultiplierLessThanOne(self):
        batch_size = 5
        height, width = 224, 224
        num_classes = 1000

        inputs = tf.random_uniform((batch_size, height, width, 3))
        _, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)

        endpoint_keys = [
            key for key in end_points.keys() if key.startswith('Conv')
        ]

        _, end_points_with_multiplier = mobilenet_v1.mobilenet_v1(
            inputs,
            num_classes,
            scope='depth_multiplied_net',
            depth_multiplier=0.5)

        for key in endpoint_keys:
            original_depth = end_points[key].get_shape().as_list()[3]
            new_depth = end_points_with_multiplier[key].get_shape().as_list(
            )[3]
            self.assertEqual(0.5 * original_depth, new_depth)
示例#8
0
    def testBuildClassificationNetwork(self):
        batch_size = 5
        height, width = 224, 224
        num_classes = 1000

        inputs = tf.random_uniform((batch_size, height, width, 3))
        logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
        self.assertTrue(
            logits.op.name.startswith('MobilenetV1/Logits/SpatialSqueeze'))
        self.assertListEqual(logits.get_shape().as_list(),
                             [batch_size, num_classes])
        self.assertTrue('Predictions' in end_points)
        self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                             [batch_size, num_classes])
示例#9
0
    def testEvaluation(self):
        batch_size = 2
        height, width = 224, 224
        num_classes = 1000

        eval_inputs = tf.random_uniform((batch_size, height, width, 3))
        logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs,
                                              num_classes,
                                              is_training=False)
        predictions = tf.argmax(logits, 1)

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            output = sess.run(predictions)
            self.assertEquals(output.shape, (batch_size, ))
示例#10
0
    def testUnknowBatchSize(self):
        batch_size = 1
        height, width = 224, 224
        num_classes = 1000

        inputs = tf.placeholder(tf.float32, (None, height, width, 3))
        logits, _ = mobilenet_v1.mobilenet_v1(inputs, num_classes)
        self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits'))
        self.assertListEqual(logits.get_shape().as_list(), [None, num_classes])
        images = tf.random_uniform((batch_size, height, width, 3))

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            output = sess.run(logits, {inputs: images.eval()})
            self.assertEquals(output.shape, (batch_size, num_classes))
示例#11
0
def build_model():
  """Builds graph for model to train with rewrites for quantization.

  Returns:
    g: Graph with fake quantization ops and batch norm folding suitable for
    training quantized weights.
    train_tensor: Train op for execution during training.
  """
  g = tf.Graph()
  with g.as_default(), tf.device(
      tf.train.replica_device_setter(FLAGS.ps_tasks)):
    inputs, labels = imagenet_input(is_training=True)
    with slim.arg_scope(mobilenet_v1.mobilenet_v1_arg_scope(is_training=True)):
      logits, _ = mobilenet_v1.mobilenet_v1(
          inputs,
          is_training=True,
          depth_multiplier=FLAGS.depth_multiplier,
          num_classes=FLAGS.num_classes)

    tf.losses.softmax_cross_entropy(labels, logits)

    # Call rewriter to produce graph with fake quant ops and folded batch norms
    # quant_delay delays start of quantization till quant_delay steps, allowing
    # for better model accuracy.
    if FLAGS.quantize:
      tf.contrib.quantize.create_training_graph(quant_delay=get_quant_delay())

    total_loss = tf.losses.get_total_loss(name='total_loss')
    # Configure the learning rate using an exponential decay.
    num_epochs_per_decay = 2.5
    imagenet_size = 1271167
    decay_steps = int(imagenet_size / FLAGS.batch_size * num_epochs_per_decay)

    learning_rate = tf.train.exponential_decay(
        get_learning_rate(),
        tf.train.get_or_create_global_step(),
        decay_steps,
        _LEARNING_RATE_DECAY_FACTOR,
        staircase=True)
    opt = tf.train.GradientDescentOptimizer(learning_rate)

    train_tensor = slim.learning.create_train_op(
        total_loss,
        optimizer=opt)

  slim.summaries.add_scalar_summary(total_loss, 'total_loss', 'losses')
  slim.summaries.add_scalar_summary(learning_rate, 'learning_rate', 'training')
  return g, train_tensor
示例#12
0
 def testUnknownImageShape(self):
     tf.reset_default_graph()
     batch_size = 2
     height, width = 224, 224
     num_classes = 1000
     input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
     with self.test_session() as sess:
         inputs = tf.placeholder(tf.float32,
                                 shape=(batch_size, None, None, 3))
         logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
         self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits'))
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, num_classes])
         pre_pool = end_points['Conv2d_13_pointwise']
         feed_dict = {inputs: input_np}
         tf.global_variables_initializer().run()
         pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
         self.assertListEqual(list(pre_pool_out.shape),
                              [batch_size, 7, 7, 1024])