def testRaiseValueErrorWithInvalidDepthMultiplier(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) with self.assertRaises(ValueError): _ = mobilenet_v1.mobilenet_v1(inputs, num_classes, depth_multiplier=-0.1) with self.assertRaises(ValueError): _ = mobilenet_v1.mobilenet_v1(inputs, num_classes, depth_multiplier=0.0)
def build_model(): """Build the mobilenet_v1 model for evaluation. Returns: g: graph with rewrites after insertion of quantization ops and batch norm folding. eval_ops: eval ops for inference. variables_to_restore: List of variables to restore from checkpoint. """ g = tf.Graph() with g.as_default(): inputs, labels = imagenet_input(is_training=False) scope = mobilenet_v1.mobilenet_v1_arg_scope(is_training=False, weight_decay=0.0) with slim.arg_scope(scope): logits, _ = mobilenet_v1.mobilenet_v1( inputs, is_training=False, depth_multiplier=FLAGS.depth_multiplier, num_classes=FLAGS.num_classes) if FLAGS.quantize: tf.contrib.quantize.create_eval_graph() eval_ops = metrics(logits, labels) return g, eval_ops
def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 150, 150 num_classes = 1000 train_inputs = tf.random_uniform((train_batch_size, height, width, 3)) mobilenet_v1.mobilenet_v1(train_inputs, num_classes) eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3)) logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes, reuse=True) predictions = tf.argmax(logits, 1) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (eval_batch_size, ))
def testLogitsNotSqueezed(self): num_classes = 25 images = tf.random_uniform([1, 224, 224, 3]) logits, _ = mobilenet_v1.mobilenet_v1(images, num_classes=num_classes, spatial_squeeze=False) with self.test_session() as sess: tf.global_variables_initializer().run() logits_out = sess.run(logits) self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
def testBuildPreLogitsNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(net.op.name.startswith('MobilenetV1/Logits/AvgPool')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024]) self.assertFalse('Logits' in end_points) self.assertFalse('Predictions' in end_points)
def testHalfSizeImages(self): batch_size = 5 height, width = 112, 112 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 4, 4, 1024])
def testBuildEndPointsWithDepthMultiplierLessThanOne(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) endpoint_keys = [ key for key in end_points.keys() if key.startswith('Conv') ] _, end_points_with_multiplier = mobilenet_v1.mobilenet_v1( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=0.5) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list( )[3] self.assertEqual(0.5 * original_depth, new_depth)
def testBuildClassificationNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue( logits.op.name.startswith('MobilenetV1/Logits/SpatialSqueeze')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Predictions' in end_points) self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes])
def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 eval_inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes, is_training=False) predictions = tf.argmax(logits, 1) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (batch_size, ))
def testUnknowBatchSize(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 inputs = tf.placeholder(tf.float32, (None, height, width, 3)) logits, _ = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = tf.random_uniform((batch_size, height, width, 3)) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes))
def build_model(): """Builds graph for model to train with rewrites for quantization. Returns: g: Graph with fake quantization ops and batch norm folding suitable for training quantized weights. train_tensor: Train op for execution during training. """ g = tf.Graph() with g.as_default(), tf.device( tf.train.replica_device_setter(FLAGS.ps_tasks)): inputs, labels = imagenet_input(is_training=True) with slim.arg_scope(mobilenet_v1.mobilenet_v1_arg_scope(is_training=True)): logits, _ = mobilenet_v1.mobilenet_v1( inputs, is_training=True, depth_multiplier=FLAGS.depth_multiplier, num_classes=FLAGS.num_classes) tf.losses.softmax_cross_entropy(labels, logits) # Call rewriter to produce graph with fake quant ops and folded batch norms # quant_delay delays start of quantization till quant_delay steps, allowing # for better model accuracy. if FLAGS.quantize: tf.contrib.quantize.create_training_graph(quant_delay=get_quant_delay()) total_loss = tf.losses.get_total_loss(name='total_loss') # Configure the learning rate using an exponential decay. num_epochs_per_decay = 2.5 imagenet_size = 1271167 decay_steps = int(imagenet_size / FLAGS.batch_size * num_epochs_per_decay) learning_rate = tf.train.exponential_decay( get_learning_rate(), tf.train.get_or_create_global_step(), decay_steps, _LEARNING_RATE_DECAY_FACTOR, staircase=True) opt = tf.train.GradientDescentOptimizer(learning_rate) train_tensor = slim.learning.create_train_op( total_loss, optimizer=opt) slim.summaries.add_scalar_summary(total_loss, 'total_loss', 'losses') slim.summaries.add_scalar_summary(learning_rate, 'learning_rate', 'training') return g, train_tensor
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])