示例#1
0
    def setup(self):
        self.num_pix = 25  # cutout pixel size
        self.subgrid_res_source = 2
        delta_pix = 0.32
        _, _, ra_at_xy_0, dec_at_xy_0, _, _, Mpix2coord, _ \
            = l_util.make_grid_with_coordtransform(numPix=self.num_pix, deltapix=delta_pix, subgrid_res=1,
                                                         inverse=False, left_lower=False)
        kwargs_data = {
            'ra_at_xy_0': ra_at_xy_0,
            'dec_at_xy_0': dec_at_xy_0,
            'transform_pix2angle': Mpix2coord,
            'image_data': np.zeros((self.num_pix, self.num_pix))
        }

        data_class = ImageData(**kwargs_data)
        numerics_image = NumericsSubFrame(data_class, PSF('NONE'))
        numerics_source = NumericsSubFrame(
            data_class,
            PSF('NONE'),
            supersampling_factor=self.subgrid_res_source)
        self.source_plane = SizeablePlaneGrid(numerics_source.grid_class,
                                              verbose=True)

        # create a mask mimicking the real case of lensing operation
        lens_model_class = LensModel(['SIE'])
        kwargs_lens = [{
            'theta_E': 1.5,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.1,
            'e2': 0.1
        }]
        lensing_op = LensingOperator(lens_model_class,
                                     numerics_image.grid_class,
                                     numerics_source.grid_class, self.num_pix,
                                     self.subgrid_res_source)
        lensing_op.update_mapping(kwargs_lens)
        unit_image = np.ones((self.num_pix, self.num_pix))
        mask_image = np.zeros((self.num_pix, self.num_pix))
        mask_image[2:-2, 2:-2] = 1  # some binary image that mask out borders
        self.unit_image_mapped = lensing_op.image2source_2d(unit_image,
                                                            no_flux_norm=False)
        self.mask_mapped = lensing_op.image2source_2d(mask_image)
    def test_matrix_product(self):
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='nearest_legacy')
        lensing_op.update_mapping(self.kwargs_lens)

        lensing_op_mat = LensingOperator(self.lens_model,
                                         self.image_grid_class,
                                         self.source_grid_class_default,
                                         self.num_pix,
                                         source_interpolation='nearest')
        lensing_op_mat.update_mapping(self.kwargs_lens)

        source_1d = util.image2array(self.source_light_delensed)
        image_1d = util.image2array(self.source_light_lensed)

        npt.assert_equal(lensing_op.source2image(source_1d),
                         lensing_op_mat.source2image(source_1d))
        npt.assert_equal(lensing_op.image2source(image_1d),
                         lensing_op_mat.image2source(image_1d))
    def test_interpol_mapping(self):
        """testing than image2source / source2image are close to the parametric mapping"""
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='bilinear')
        lensing_op.update_mapping(self.kwargs_lens)

        source_1d = util.image2array(self.source_light_delensed)
        image_1d = util.image2array(self.source_light_lensed)

        source_1d_lensed = lensing_op.source2image(source_1d)
        image_1d_delensed = lensing_op.image2source(image_1d)
        assert source_1d_lensed.shape == image_1d.shape
        assert image_1d_delensed.shape == source_1d.shape

        npt.assert_almost_equal(source_1d_lensed / source_1d_lensed.max(),
                                image_1d / image_1d.max(),
                                decimal=0.8)
        npt.assert_almost_equal(image_1d_delensed / image_1d_delensed.max(),
                                source_1d / source_1d.max(),
                                decimal=0.8)
    def test_minimal_source_plane(self):
        source_1d = util.image2array(self.source_light_delensed)

        # test with no mask
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='nearest',
                                     minimal_source_plane=True)
        lensing_op.update_mapping(self.kwargs_lens)
        image_1d = util.image2array(self.source_light_lensed)
        assert lensing_op.image2source(image_1d).size < source_1d.size

        # test with mask
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='nearest',
                                     minimal_source_plane=True)
        lensing_op.set_likelihood_mask(self.likelihood_mask)
        lensing_op.update_mapping(self.kwargs_lens)
        image_1d = util.image2array(self.source_light_lensed)
        assert lensing_op.image2source(image_1d).size < source_1d.size

        # for 'bilinear' operator, only works with no mask (for now)
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='bilinear',
                                     minimal_source_plane=True)
        lensing_op.update_mapping(self.kwargs_lens)
        image_1d = util.image2array(self.source_light_lensed)
        assert lensing_op.image2source(image_1d).size < source_1d.size
示例#5
0
class TestModelOperators(object):
    """
    tests the Lensing Operator classes
    """
    def setup(self):
        self.num_pix = 49  # cutout pixel size
        self.subgrid_res_source = 2
        self.num_pix_source = self.num_pix * self.subgrid_res_source

        delta_pix = 0.24
        _, _, ra_at_xy_0, dec_at_xy_0, _, _, Mpix2coord, _ \
            = l_util.make_grid_with_coordtransform(numPix=self.num_pix, deltapix=delta_pix, subgrid_res=1,
                                                         inverse=False, left_lower=False)

        self.image_data = np.random.rand(self.num_pix, self.num_pix)
        kwargs_data = {
            'ra_at_xy_0': ra_at_xy_0,
            'dec_at_xy_0': dec_at_xy_0,
            'transform_pix2angle': Mpix2coord,
            'image_data': self.image_data,
        }
        data = ImageData(**kwargs_data)

        lens_model = LensModel(['SPEP'])
        kwargs_lens = [{
            'theta_E': 1,
            'gamma': 2,
            'center_x': 0,
            'center_y': 0,
            'e1': -0.05,
            'e2': 0.05
        }]

        # PSF
        kernel_pixel = np.zeros((self.num_pix, self.num_pix))
        kernel_pixel[int(self.num_pix / 2),
                     int(self.num_pix / 2)] = 1  # just a dirac here
        kwargs_psf = {'psf_type': 'PIXEL', 'kernel_point_source': kernel_pixel}
        psf = PSF(**kwargs_psf)

        # wavelets scales for lens and source
        self.n_scales_source = 4
        self.n_scales_lens = 3

        # list of source light profiles
        source_model = LightModel(['SLIT_STARLETS'])
        self.kwargs_source = [{'n_scales': self.n_scales_source}]

        # list of lens light profiles
        lens_light_model = LightModel(['SLIT_STARLETS'])
        self.kwargs_lens_light = [{'n_scales': self.n_scales_lens}]

        # define some mask
        likelihood_mask = np.ones((self.num_pix, self.num_pix))

        # get grid classes
        self.numerics = NumericsSubFrame(data, psf)
        image_grid_class = self.numerics.grid_class
        source_numerics = NumericsSubFrame(
            data, psf, supersampling_factor=self.subgrid_res_source)
        source_grid_class = source_numerics.grid_class

        # get a lensing operator
        self.lensing_op = LensingOperator(lens_model, image_grid_class,
                                          source_grid_class, self.num_pix)
        self.lensing_op.update_mapping(kwargs_lens)

        self.model_op = ModelOperators(data, self.lensing_op, self.numerics)
        self.model_op._set_likelihood_mask(likelihood_mask)
        self.model_op.add_source_light(source_model)
        self.model_op.add_lens_light(lens_light_model)
        self.model_op_nolens = ModelOperators(data, self.lensing_op,
                                              self.numerics)
        self.model_op_nolens._set_likelihood_mask(likelihood_mask)
        self.model_op_nolens.add_source_light(source_model)

        # define some test images in direct space
        self.X_s = np.random.rand(self.num_pix_source,
                                  self.num_pix_source)  # source light
        self.X_l = np.random.rand(self.num_pix, self.num_pix)  # lens light

        # define some test images in wavelets space
        self.alpha_s = np.random.rand(self.n_scales_source,
                                      self.num_pix_source,
                                      self.num_pix_source)  # source light
        self.alpha_l = np.random.rand(self.n_scales_lens, self.num_pix,
                                      self.num_pix)  # lens light

    def test_set_wavelet_scales(self):
        self.model_op.set_source_wavelet_scales(self.n_scales_source)
        Phi_T_s_X = self.model_op.Phi_T_s(self.X_s)
        self.model_op.set_lens_wavelet_scales(self.n_scales_lens)
        Phi_T_l_X = self.model_op.Phi_T_l(self.X_l)
        # test that transformed image has the right shape in terms of number of scales
        assert Phi_T_s_X.shape[0] == self.n_scales_source
        assert Phi_T_l_X.shape[0] == self.n_scales_lens

    def test_subtract_from_data_and_reset(self):
        image_to_subtract = np.eye(self.num_pix, self.num_pix)
        self.model_op.subtract_from_data(image_to_subtract)
        npt.assert_equal(self.model_op.Y, self.image_data)
        npt.assert_equal(self.model_op.Y_eff,
                         self.image_data - image_to_subtract)
        self.model_op.reset_data()
        npt.assert_equal(self.model_op.Y, self.image_data)
        npt.assert_equal(self.model_op.Y_eff, self.image_data)

    def test_spectral_norm_source(self):
        self.model_op.set_source_wavelet_scales(self.n_scales_source)
        npt.assert_almost_equal(self.model_op.spectral_norm_source,
                                0.97,
                                decimal=2)

    def test_spectral_norm_lens(self):
        self.model_op.set_lens_wavelet_scales(self.n_scales_lens)
        npt.assert_almost_equal(self.model_op.spectral_norm_lens,
                                0.99,
                                decimal=2)

    def test_data_terms(self):
        npt.assert_equal(self.model_op.Y, self.image_data)
        npt.assert_equal(self.model_op.Y_eff, self.image_data)

    def test_convolution(self):
        H_X_s = self.model_op.H(self.X_s)
        npt.assert_equal(
            H_X_s, self.numerics.convolution_class.convolution2d(self.X_s))
        H_T_X_s = self.model_op.H_T(self.X_s)
        conv_transpose = self.numerics.convolution_class.copy_transpose()
        npt.assert_equal(H_T_X_s, conv_transpose.convolution2d(self.X_s))

    def test_lensing(self):
        F_X_s = self.model_op.F(self.X_s)
        npt.assert_equal(F_X_s, self.lensing_op.source2image_2d(self.X_s))
        F_T_X_l = self.model_op.F_T(self.X_l)
        npt.assert_equal(F_T_X_l, self.lensing_op.image2source_2d(self.X_l))

    def test_wavelet_transform(self):
        # TODO : do more accurate tests here
        self.model_op.set_source_wavelet_scales(self.n_scales_source)
        self.model_op.set_lens_wavelet_scales(self.n_scales_lens)
        Phi_alpha_s = self.model_op.Phi_s(self.alpha_s)
        Phi_alpha_l = self.model_op.Phi_l(self.alpha_l)
        assert Phi_alpha_s.shape == (self.num_pix * self.subgrid_res_source,
                                     self.num_pix * self.subgrid_res_source)
        assert Phi_alpha_l.shape == (self.num_pix, self.num_pix)
        Phi_T_X_s = self.model_op.Phi_T_s(self.X_s)
        Phi_T_X_l = self.model_op.Phi_T_l(self.X_l)
        assert Phi_T_X_s.shape == (self.n_scales_source,
                                   self.num_pix * self.subgrid_res_source,
                                   self.num_pix * self.subgrid_res_source)
        assert Phi_T_X_l.shape == (self.n_scales_lens, self.num_pix,
                                   self.num_pix)