示例#1
0
 def update_lr(self):
     assert 'lr' in self.optim_param
     old_lr = self.optim_param['lr']
     self.optim_param['lr'] = old_lr * 0.9
     logger.debug(
         f'Learning rate decayed from {old_lr} to {self.optim_param["lr"]}')
     self.optim = net_util.get_optim_multinet(self.params, self.optim_param)
示例#2
0
    def __init__(self,
                 in_dim,
                 hid_layers,
                 out_dim,
                 hid_layers_activation=None,
                 optim_param=None,
                 loss_param=None,
                 clamp_grad=False,
                 clamp_grad_val=1.0,
                 batch_norm=True):
        '''
        in_dim: dimension of the inputs
        hid_layers: tuple consisting of two elements. (conv_hid, flat_hid)
                    Note: tuple must contain two elements, use empty list if no such layers.
            1. conv_hid: list containing dimensions of the convolutional hidden layers. Asssumed to all come before the flat layers.
                Note: a convolutional layer should specify the in_channel, out_channels, kernel_size, stride (of kernel steps), padding, and dilation (spacing between kernel points) E.g. [3, 16, (5, 5), 1, 0, (2, 2)]
                For more details, see http://pytorch.org/docs/master/nn.html#conv2d and https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

            2. flat_hid: list of dense layers following the convolutional layers
        out_dim: dimension of the ouputs
        optim_param: parameters for initializing the optimizer
        loss_param: measure of error between model
        predictions and correct outputs
        hid_layers_activation: activation function for the hidden layers
        out_activation_param: activation function for the last layer
        clamp_grad: whether to clamp the gradient
        batch_norm: whether to add batch normalization after each convolutional layer, excluding the input layer.
        @example:
        net = ConvNet(
                (3, 32, 32),
                ([[3, 36, (5, 5), 1, 0, (2, 2)],[36, 128, (5, 5), 1, 0, (2, 2)]],
                [100]),
                10,
                hid_layers_activation='relu',
                optim_param={'name': 'Adam'},
                loss_param={'name': 'mse_loss'},
                clamp_grad=False,
                batch_norm=True)
        '''
        super(ConvNet, self).__init__()
        # Create net and initialize params
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.batch_norm = batch_norm
        self.conv_layers = []
        self.conv_model = self.build_conv_layers(
            hid_layers[0], hid_layers_activation)
        self.flat_layers = []
        self.dense_model = self.build_flat_layers(
            hid_layers[1], out_dim, hid_layers_activation)
        self.num_hid_layers = len(self.conv_layers) + len(self.flat_layers) - 1
        self.init_params()
        # Init other net variables
        self.params = list(self.conv_model.parameters()) + \
            list(self.dense_model.parameters())
        self.optim = net_util.get_optim_multinet(self.params, optim_param)
        self.loss_fn = net_util.get_loss_fn(self, loss_param)
        self.clamp_grad = clamp_grad
        self.clamp_grad_val = clamp_grad_val
示例#3
0
 def __init__(self,
              in_dim,
              hid_dim,
              out_dim,
              hid_layers_activation=None,
              optim_param=None,
              loss_param=None,
              clamp_grad=False,
              clamp_grad_val=1.0):
     '''
     in_dim: dimension of the inputs
     hid_dim: list containing dimensions of the hidden layers
     out_dim: list containing the dimensions of the ouputs
     hid_layers_activation: activation function for the hidden layers
     optim_param: parameters for initializing the optimizer
     loss_param: measure of error between model predictions and correct outputs
     clamp_grad: whether to clamp the gradient
     @example:
     net = MLPHeterogenousHeads(
             1000,
             [512, 256, 128],
             [1, 1],
             hid_layers_activation='relu',
             optim_param={'name': 'Adam'},
             loss_param={'name': 'mse_loss'},
             clamp_grad=True,
             clamp_grad_val=2.0)
     '''
     nn.Module.__init__(self)
     # Create net and initialize params
     self.in_dim = in_dim
     self.out_dim = out_dim
     self.layers = []
     # Init network body
     for i, layer in enumerate(hid_dim):
         in_D = in_dim if i == 0 else hid_dim[i - 1]
         out_D = hid_dim[i]
         self.layers += [nn.Linear(in_D, out_D)]
         self.layers += [net_util.get_activation_fn(hid_layers_activation)]
     in_D = hid_dim[-1] if len(hid_dim) > 0 else in_dim
     self.body = nn.Sequential(*self.layers)
     # Init network output heads
     self.out_layers = []
     for i, dim in enumerate(out_dim):
         self.out_layers += [nn.Linear(in_D, dim)]
     self.layers += [self.out_layers]
     self.init_params()
     # Init other net variables
     self.params = list(self.body.parameters())
     for layer in self.out_layers:
         self.params.extend(list(layer.parameters()))
     self.optim_param = optim_param
     self.optim = net_util.get_optim_multinet(self.params, self.optim_param)
     self.loss_fn = net_util.get_loss_fn(self, loss_param)
     self.clamp_grad = clamp_grad
     self.clamp_grad_val = clamp_grad_val
示例#4
0
    def __init__(self,
                 in_dim,
                 hid_layers,
                 out_dim,
                 hid_layers_activation=None,
                 optim_param=None,
                 loss_param=None,
                 clamp_grad=False,
                 clamp_grad_val=1.0,
                 batch_norm=True):
        '''
        in_dim: dimension of the inputs
        hid_layers: tuple consisting of two elements. (conv_hid, flat_hid)
                    Note: tuple must contain two elements, use empty list if no such layers.
            1. conv_hid: list containing dimensions of the convolutional hidden layers. Asssumed to all come before the flat layers.
                Note: a convolutional layer should specify the in_channel, out_channels, kernel_size, stride (of kernel steps), padding, and dilation (spacing between kernel points) E.g. [3, 16, (5, 5), 1, 0, (2, 2)]
                For more details, see http://pytorch.org/docs/master/nn.html#conv2d and https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

            2. flat_hid: list of dense layers following the convolutional layers
        out_dim: dimension of the output for one output, otherwise a list containing the dimensions of the ouputs for a multi-headed network
        hid_layers_activation: activation function for the hidden layers
        optim_param: parameters for initializing the optimizer
        loss_param: measure of error between model predictions and correct outputs
        clamp_grad: whether to clamp the gradient
        batch_norm: whether to add batch normalization after each convolutional layer, excluding the input layer.
        @example:
        net = ConvNet(
                (3, 32, 32),
                ([[3, 36, (5, 5), 1, 0, (2, 2)],[36, 128, (5, 5), 1, 0, (2, 2)]],[100]),
                10,
                hid_layers_activation='relu',
                optim_param={'name': 'Adam'},
                loss_param={'name': 'mse_loss'},
                clamp_grad=False,
                batch_norm=True)
        '''
        super(ConvNet, self).__init__()
        # Create net and initialize params
        # We need to transpose the dimensions for pytorch.
        # OpenAI gym provides images as W x H x C, pyTorch expects C x W x H
        self.in_dim = list(in_dim[:-1])
        self.in_dim.insert(0, in_dim[-1])
        # Handle multiple types of out_dim (single and multi-headed)
        if type(out_dim) is int:
            out_dim = [out_dim]
        self.out_dim = out_dim
        self.batch_norm = batch_norm
        self.conv_layers = []
        self.conv_model = self.build_conv_layers(hid_layers[0],
                                                 hid_layers_activation)
        self.flat_layers = []
        self.dense_model = self.build_flat_layers(hid_layers[1],
                                                  hid_layers_activation)
        self.out_layers = []
        in_D = hid_layers[1][-1] if len(hid_layers[1]) > 0 else self.flat_dim
        for dim in out_dim:
            self.out_layers += [nn.Linear(in_D, dim)]
        self.num_hid_layers = len(self.conv_layers) + len(self.flat_layers)
        self.init_params()
        # Init other net variables
        self.params = list(self.conv_model.parameters()) + \
            list(self.dense_model.parameters())
        for layer in self.out_layers:
            self.params.extend(list(layer.parameters()))
        self.optim_param = optim_param
        self.optim = net_util.get_optim_multinet(self.params, self.optim_param)
        self.loss_fn = net_util.get_loss_fn(self, loss_param)
        self.clamp_grad = clamp_grad
        self.clamp_grad_val = clamp_grad_val
示例#5
0
    def __init__(self,
                 in_dim,
                 hid_dim,
                 out_dim,
                 hid_layers_activation=None,
                 optim_param=None,
                 loss_param=None,
                 clamp_grad=False,
                 clamp_grad_val=1.0,
                 gpu=False):
        '''
        Multi state processing heads, single shared body, and multi action heads.
        There is one state and action head per environment
        Example:

          Action env 1     Action env 2
         _______|______    _______|______
        |  Act head 1  |  |  Act head 2  |
        |______________|  |______________|
                |                  |
                |__________________|
         ________________|_______________
        |          Shared body           |
        |________________________________|
                         |
                 ________|_______
                |                |
         _______|______    ______|_______
        | State head 1 |  | State head 2 |
        |______________|  |______________|

        in_dim: list of lists containing dimensions of the state processing heads
        hid_dim: list containing dimensions of the hidden layers
        out_dim: list of lists containing dimensions of the ouputs
        hid_layers_activation: activation function for the hidden layers
        optim_param: parameters for initializing the optimizer
        loss_param: measure of error between model predictions and correct outputs
        clamp_grad: whether to clamp the gradient
        gpu: whether to train using a GPU. Note this will only work if a GPU is available, othewise setting gpu=True does nothing
        @example:
        net = MLPNet(
            [[800, 200],[400, 200]],
             [100, 50, 25],
             [[10], [15]],
             hid_layers_activation='relu',
             optim_param={'name': 'Adam'},
             loss_param={'name': 'mse_loss'},
             clamp_grad=True,
             clamp_grad_val2.0,
             gpu=False)
        '''
        super(MultiMLPNet, self).__init__()
        # Create net and initialize params
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.state_heads_layers = []
        self.state_heads_models = self.make_state_heads(
            self.in_dim, hid_layers_activation)
        self.shared_layers = []
        self.body = self.make_shared_body(self.state_out_concat, hid_dim,
                                          hid_layers_activation)
        self.action_heads_layers = []
        in_D = hid_dim[-1] if len(hid_dim) > 0 else self.state_out_concat
        self.action_heads_models = self.make_action_heads(
            in_D, self.out_dim, hid_layers_activation)
        self.init_params()
        if torch.cuda.is_available() and gpu:
            for l in self.state_heads_models:
                l.cuda()
            self.body.cuda()
            for l in self.action_heads_models:
                l.cuda()
        # Init other net variables
        self.params = []
        for model in self.state_heads_models:
            self.params.extend(list(model.parameters()))
        self.params.extend(list(self.body.parameters()))
        for model in self.action_heads_models:
            self.params.extend(list(model.parameters()))
        self.optim_param = optim_param
        self.optim = net_util.get_optim_multinet(self.params, self.optim_param)
        self.loss_fn = net_util.get_loss_fn(self, loss_param)
        self.clamp_grad = clamp_grad
        self.clamp_grad_val = clamp_grad_val
示例#6
0
 def __init__(self,
              in_dim,
              hid_dim,
              out_dim,
              sequence_length,
              hid_layers_activation=None,
              optim_param=None,
              loss_param=None,
              clamp_grad=False,
              clamp_grad_val=1.0,
              num_rnn_layers=1):
     '''
     in_dim: dimension of the states
     hid_dim: list containing dimensions of the hidden layers. The last element of the list is should be the dimension of the hidden state for the recurrent layer. The other elements in the list are the dimensions of the MLP (if desired) which is to transform the state space.
     out_dim: dimension of the output for one output, otherwise a list containing the dimensions of the ouputs for a multi-headed network
     sequence_length: length of the history of being passed to the net
     hid_layers_activation: activation function for the hidden layers
     optim_param: parameters for initializing the optimizer
     loss_param: measure of error between model predictions and correct output
     clamp_grad: whether to clamp the gradient
     clamp_grad_val: what value to clamp the gradient at
     num_rnn_layers: number of recurrent layers
     @example:
     net = RecurrentNet(
             4,
             [32, 64],
             10,
             8,
             hid_layers_activation='relu',
             optim_param={'name': 'Adam'},
             loss_param={'name': 'mse_loss'},
             clamp_grad=False)
     '''
     super(RecurrentNet, self).__init__()
     # Create net and initialize params
     self.in_dim = in_dim
     self.sequence_length = sequence_length
     self.hid_dim = hid_dim[-1]
     # Handle multiple types of out_dim (single and multi-headed)
     if type(out_dim) is int:
         out_dim = [out_dim]
     self.out_dim = out_dim
     self.num_rnn_layers = num_rnn_layers
     self.state_processing_layers = []
     self.state_proc_model = self.build_state_proc_layers(
         hid_dim[:-1], hid_layers_activation)
     self.rnn_input_dim = hid_dim[-2] if len(hid_dim) > 1 else self.in_dim
     self.rnn = nn.GRU(input_size=self.rnn_input_dim,
                       hidden_size=self.hid_dim,
                       num_layers=self.num_rnn_layers,
                       batch_first=True)
     # Init network output heads
     self.out_layers = []
     for dim in self.out_dim:
         self.out_layers += [nn.Linear(self.hid_dim, dim)]
     self.layers = [self.state_processing_layers] + [self.rnn] + [self.out_layers]
     self.num_hid_layers = None
     self.init_params()
     # Init other net variables
     self.params = list(self.state_proc_model.parameters()) + list(self.rnn.parameters())
     for layer in self.out_layers:
         self.params.extend(list(layer.parameters()))
     # Store named parameters for unit testing
     self.named_params = list(self.state_proc_model.named_parameters()) + list(self.rnn.named_parameters())
     for layer in self.out_layers:
         self.named_params.extend(list(layer.named_parameters()))
     self.optim_param = optim_param
     self.optim = net_util.get_optim_multinet(self.params, self.optim_param)
     self.loss_fn = net_util.get_loss_fn(self, loss_param)
     self.clamp_grad = clamp_grad
     self.clamp_grad_val = clamp_grad_val