import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torch.nn.functional as F # import models.cnn_1d as model # import models.bilstm as lstmmodel import models.cbensemble as cbemodel import loaddata import loadfeat from torch.optim.lr_scheduler import ReduceLROnPlateau, MultiStepLR import smile as sm from smile import flags, logging flags.DEFINE_string("aln_dpath", "./aln_example", "alignment file directory path") flags.DEFINE_string("train_fname", "sample.aln", "training alignment file name") flags.DEFINE_string("valid_fname", "sample.aln", "valid alignment file name") flags.DEFINE_string("test_fname", "sample.aln", "not required") flags.DEFINE_integer("feature_size", 42, "sequence feature dim num + pssm feature dim num") flags.DEFINE_integer("pssm_dim", 21, "pssm feature dim num") flags.DEFINE_integer("batch_size", 32, "batch size") flags.DEFINE_string("model_path", "/mnt/new/models/enhance-pssm-checkin/try01", " ") flags.DEFINE_boolean("load_model", False, "load model from last checkpoint")
import autograd.numpy as np import autograd.numpy.random as npr import smile as sm from smile import flags, logging from neuralfingerprint import load_data from neuralfingerprint import build_morgan_deep_net from neuralfingerprint import build_conv_deep_net from neuralfingerprint import normalize_array, adam from neuralfingerprint import build_batched_grad from neuralfingerprint.util import rmse from autograd import grad flags.DEFINE_string("data_path", "/smile/nfs/hm/17properties_datasets/17p_v1/single_property_xiaozhi/clean_17p_v1_splited", "cleaned data folder path") flags.DEFINE_integer("i", 0, "from 0 to 16") FLAGS = flags.FLAGS data_path = FLAGS.data_path p_i = FLAGS.i task_params = { 'target_name': 'p{}'.format(p_i), 'data_file': [ os.path.join(data_path, "{}/{}_p{}.csv".format("train", "train", p_i)), os.path.join(data_path, "{}/{}_p{}.csv".format("val", "val", p_i)), os.path.join(data_path, "{}/{}_p{}.csv".format("test", "test", p_i)) ]
"""Test helper for smoke_test.sh.""" # Similar to https://github.com/abseil/abseil-py/blob/master/smoke_tests/smoke_test.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import smile as sm from smile import flags from smile import logging flags.DEFINE_string("param", "default_value", "A general flag.") with flags.Subcommand("echo", dest="action"): flags.DEFINE_string("echo_text", "", "The text to be echoed out.") with flags.Subcommand("echo_bool", dest="action"): flags.DEFINE_bool("just_do_it", False, "some help infomation") FLAGS = flags.FLAGS def main(_): """Print out the FLAGS in the main function.""" logging.info("param = %s", FLAGS.param) if FLAGS.action == "echo": logging.warning(FLAGS.echo_text) elif FLAGS.action == "echo_bool": logging.info("Just do it? %s", "Yes!" if FLAGS.just_do_it else "No :(")
import os import time import numpy as np import simplejson as json import smile as sm import tensorflow as tf from smile import flags, logging import base_hparams import reader from data_utils import Vocabulary from models import DiscoveryModel from reader import vectorize_smile flags.DEFINE_string("dataset_spec", "{}", "Data csv path for training.") flags.DEFINE_string( "train_dir", "", "Directory path used to store the checkpoints and summary.") flags.DEFINE_string("data_hparams", "{}", "Data hparams JSON string.") flags.DEFINE_string("hparams", "{}", "Model hparams JSON string.") flags.DEFINE_integer("epochs", 10, "Total training epochs.") flags.DEFINE_integer("steps_per_checkpoint", 200, "Steps to perform test and save checkpoints.") FLAGS = flags.FLAGS def make_train_data(dataset_spec, vocab, data_hparams, epochs): """Make training and validation dataset.""" # Make SMILE vectorization function.
"""Extract test summary script.""" from __future__ import division, print_function import functools import glob import os import time import smile as sm import tensorflow as tf from smile import flags, logging flags.DEFINE_string("event_file", "", "TF summary event file.") flags.DEFINE_string("event_dir", "", "TF summary event dir.") flags.DEFINE_string("tag", "", "Tag to show.") flags.DEFINE_integer("step", 1, "Desired event step.") FLAGS = flags.FLAGS def show_event_file(event_file): try: it = tf.train.summary_iterator(event_file) except: logging.error("Corrupted file: " % event_file) return for event in it: if event.step == FLAGS.step: for v in event.summary.value: if v.tensor and v.tensor.string_val: if FLAGS.tag and FLAGS.tag != v.tag:
"""Prepare data for seq3seq training.""" from __future__ import print_function import smile as sm from smile import flags from semisupervised.data import build_vocab, translate_tokens flags.DEFINE_string("smi_path", "/smile/nfs/projects/nih_drug/data/logp/logp.smi", "smi data path.") flags.DEFINE_string( "tmp_path", "", "Temporary data path. If none, a named temporary file will be used.") flags.DEFINE_string("vocab_path", "", "Vocabulary data_path.") flags.DEFINE_string("out_path", "", "Output token path.") flags.DEFINE_bool( "build_vocab", False, "Trigger the action: False for translating only. " "If true, the script will build vocabulary and then translating.") FLAGS = flags.FLAGS def main(_): """Entry function for this script.""" if FLAGS.build_vocab: build_vocab(FLAGS.smi_path, FLAGS.vocab_path, FLAGS.out_path, FLAGS.tmp_path) else: translate_tokens(FLAGS.smi_path, FLAGS.vocab_path, FLAGS.out_path, FLAGS.tmp_path)
"""Tests for our flags implementation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest from smile import flags flags.DEFINE_string("string_foo", "default_val", "HelpString") flags.DEFINE_integer("int_foo", 42, "HelpString") flags.DEFINE_float("float_foo", 42.0, "HelpString") flags.DEFINE_boolean("bool_foo", True, "HelpString") flags.DEFINE_boolean("bool_negation", True, "HelpString") flags.DEFINE_boolean("bool-dash-negation", True, "HelpString") flags.DEFINE_boolean("bool_a", False, "HelpString") flags.DEFINE_boolean("bool_c", False, "HelpString") flags.DEFINE_boolean("bool_d", True, "HelpString") flags.DEFINE_bool("bool_e", True, "HelpString") with flags.Subcommand("dummy_action", dest="action"): pass with flags.Subcommand("move", dest="action"): flags.DEFINE_string("move_string", "default", "help") flags.DEFINE_bool("move_bool", True, "HelpString") with flags.Subcommand("dummy_object", dest="object"): pass
import torch.utils.data as Data import torch.nn.functional as F # import models.cnn_1d as model # import models.bilstm as lstmmodel import models.cbensemble as cbemodel import loaddata import loadfeat # import loaddata.get_batch as get_batch from torch.optim.lr_scheduler import ReduceLROnPlateau, MultiStepLR import smile as sm from smile import flags, logging flags.DEFINE_string( "eval_feat_path", "./feat_example/sample2.feat", "To generate the original feat file, the PSSM calculatation must follow the PSSM fomulas in our paper" ) flags.DEFINE_string( "save_fpath", "/mnt/new/models/enhance-pssm-checkin/try01/save_new_feat/new.feat", "") flags.DEFINE_string("model_path", "/mnt/new/models/enhance-pssm-checkin/try01", " ") flags.DEFINE_integer("epoch", 2, "eval checkpoint number") flags.DEFINE_integer("feature_size", 42, "sequence feature dim num + pssm feature dim num") flags.DEFINE_integer("pssm_dim", 21, "pssm feature dim num") flags.DEFINE_integer("batch_size", 32, "batch size") flags.DEFINE_boolean("load_model", False, " ")