示例#1
0
def get_timestep_ipw(tstep, input_list, ppt_list, myawsm):
    """
    Pull out a time step from the forcing files (IPW) and
    place that time step into a dict

    Args:
        tstep:      datetime of timestep
        input_list: numpy array (1D) of integer timesteps given
        ppt_list:   numpy array(1D) of integer timesteps for ppt_list
        myawsm:     AWSM instance for current run

    Returns:
        inpt:       dictionary of forcing variable images

    """

    inpt = {}

    # map function from these values to the ones requried by snobal
    map_val = {1: 'T_a', 5: 'S_n', 0: 'I_lw', 2: 'e_a', 3: 'u'}
    map_val_prec = {0: 'm_pp', 1: 'percent_snow', 2: 'rho_snow', 3: 'T_pp'}

    # get wy hour
    wyhr = int(utils.water_day(tstep)[0] * 24)
    # if we have inputs matching this water year hour
    if np.any(input_list == wyhr):
        i_in = ipw.IPW(os.path.join(myawsm.pathi, 'in.%04i' % (wyhr)))
        # assign soil temp
        inpt['T_g'] = myawsm.soil_temp * np.ones(
            (myawsm.topo.ny, myawsm.topo.nx))
        # myawsm._logger.info('T_g: {}'.format(myawsm.soil_temp))
        # inpt['T_g'] = -2.5*np.ones((myawsm.topo.ny, myawsm.topo.nx))
        for f, v in map_val.items():
            # if no solar data, give it zero
            if f == 5 and len(i_in.bands) < 6:
                # myawsm._logger.info('No solar data for {}'.format(tstep))
                inpt[v] = np.zeros((myawsm.topo.ny, myawsm.topo.nx))
            else:
                inpt[v] = i_in.bands[f].data
    # assign ppt data if there
    else:
        raise ValueError('No input timesteps for {}'.format(tstep))

    if np.any(ppt_list == wyhr):
        i_ppt = ipw.IPW(os.path.join(myawsm.path_ppt, 'ppt.4b_%04i' % (wyhr)))
        for f, v in map_val_prec.items():
            inpt[v] = i_ppt.bands[f].data
    else:
        for f, v in map_val_prec.items():
            inpt[v] = np.zeros((myawsm.topo.ny, myawsm.topo.nx))

    # convert from C to K
    inpt['T_a'] += FREEZE
    inpt['T_pp'] += FREEZE
    inpt['T_g'] += FREEZE

    return inpt
示例#2
0
    def write_init(self):
        """
        Write the iSnobal init file
        """
        # get mask
        mask = self.topo.mask
        # make ipw init file
        i_out = ipw.IPW()
        i_out.new_band(self.init['elevation'])
        i_out.new_band(self.init['z_0'])
        i_out.new_band(self.init['z_s']*mask)  # snow depth
        i_out.new_band(self.init['rho']*mask)  # snow density

        i_out.new_band(self.init['T_s_0']*mask)  # active layer temp
        if self.start_wyhr > 0 or self.restart_crash:
            i_out.new_band(self.init['T_s_l']*mask)  # lower layer temp

        i_out.new_band(self.init['T_s']*mask)  # avgerage snow temp

        i_out.new_band(self.init['h2o_sat']*mask)  # percent saturatio
        i_out.add_geo_hdr([self.topo.u, self.topo.v],
                          [self.topo.du, self.topo.dv],
                          self.topo.units, self.csys)

        i_out.write(self.fp_init, 16)
示例#3
0
    def snow_nc(self):
        ''' Takes directory of ipw files from Hedrick18 and squishes them into a netCDF '''
        # S is a dictionary list or something which is hardcoded band names and attributes for netCDF
        # from AWSM/convertfiles/convertFiles
        s = {}
        s['name'] = [
            'thickness', 'snow_density', 'specific_mass', 'liquid_water',
            'temp_surf', 'temp_lower', 'temp_snowcover', 'thickness_lower',
            'water_saturation'
        ]
        s['units'] = [
            'm', 'kg m-3', 'kg m-2', 'kg m-2', 'C', 'C', 'C', 'm', 'percent'
        ]
        s['description'] = [
            'Predicted thickness of the snowcover',
            'Predicted average snow density',
            'Predicted specific mass of the snowcover',
            'Predicted mass of liquid water in the snowcover',
            'Predicted temperature of the surface layer',
            'Predicted temperature of the lower layer',
            'Predicted temperature of the snowcover',
            'Predicted thickness of the lower layer',
            'Predicted percentage of liquid water'
        ]

        # Tell file where to save and name
        self.nc_file = os.path.join(self.file_path_out, self.file_name_out)
        # Get X,Y and Time saved to nc file
        snow = self.base_nc()
        for i, v in enumerate(self.file_path_ipw):
            snow.variables['time'][i] = self.file_num[
                i]  #file number is actually the hours after WY i.e. 23, 47, etc.
            for i2, v2 in enumerate(s['name']):
                # snow.createVariable(v, 'f', self.dimensions[:3], chunksizes=(6, 10, 10))
                if i == 0:
                    snow.createVariable(v2, 'f', self.dimensions[:3])
                    setattr(snow.variables[v2], 'units', s['units'][i2])
                    setattr(snow.variables[v2], 'description',
                            s['description'][i2])
                    snow.variables[v2][i, :, :] = ipw.IPW(v).bands[i2].data
                else:
                    snow.variables[v2][i, :, :] = ipw.IPW(v).bands[i2].data
                    # snow.variables[v][0,:,:] = self.var_data[v]
                    # print(snow.variables[v][0,:,:].shape)
                    # print(self.var_data[v].shape)
            print('Adding WY day: ', i)
        self.finish_nc(snow)
示例#4
0
    def readImages(self):
        """
        Read in the images from the config file
        """
        if 'dem' not in self.topoConfig:
            raise ValueError('DEM file not specified')

        # read in the images
        for v in self.images:
            if v in self.topoConfig:
                i = ipw.IPW(self.topoConfig[v])

                setattr(self, v, i.bands[0].data.astype(np.float64))

                if v == 'dem':
                    # get some general information about the model
                    # domain from the dem
                    self.ny = i.nlines
                    self.nx = i.nsamps
                    self.u = i.bands[0].bline
                    self.v = i.bands[0].bsamp
                    self.du = i.bands[0].dline
                    self.dv = i.bands[0].dsamp
                    self.units = i.bands[0].geounits
                    self.coord_sys_ID = i.bands[0].coord_sys_ID

            else:
                setattr(self, v, None)

        # set roughness if not given
        if 'roughness' in self.topoConfig:
            self.roughness = ipw.IPW(
                self.topoConfig['roughness']).bands[0].data.astype(np.float64)
        else:
            print('No surface roughness given in topo, setting to 5mm')
            self.roughness = 0.005 * np.ones((self.ny, self.nx))

        # create the x,y vectors
        self.x = self.v + self.dv * np.arange(self.nx)
        self.y = self.u + self.du * np.arange(self.ny)
        [self.X, self.Y] = np.meshgrid(self.x, self.y)
示例#5
0
    def get_ipw_out(self):
        """
        Set init fields for iSnobal out as init file
        """
        i_in = ipw.IPW(self.init_file)
        self.init['z_s'] = i_in.bands[0].data*self.topo.mask  # snow depth
        self.init['rho'] = i_in.bands[1].data*self.topo.mask  # snow density

        self.init['T_s_0'] = i_in.bands[4].data*self.topo.mask  # active layer temp
        self.init['T_s_l'] = i_in.bands[5].data*self.topo.mask  # lower layer temp
        self.init['T_s'] = i_in.bands[6].data*self.topo.mask  # avgerage snow temp

        self.init['h2o_sat'] = i_in.bands[8].data*self.topo.mask  # percent saturation
示例#6
0
 def height_to_type(veg_height):
     '''ZRU: this takes veg_height.ipw, reclassifies as 1,2,...N (N = number of distinct veg heights),
     and outputs nparray.  Note: classifications are ordered from shortest to tallest heights'''
     mat = ipw.IPW(
         veg_height).bands[0].data  # grab veg_height array from ipw image
     hts = []  #init list to collect unique heights
     for i in np.arange(mat.shape[0]):
         for j in np.arange(mat.shape[1]):
             if mat[i, j] in hts:
                 pass
             else:
                 hts.append(mat[i, j])
     cls = mat.copy()
     hts.sort()
     for idx, vals in enumerate(hts):
         cls[cls == vals] = idx + 1
     return cls
示例#7
0
    def __init__(self, topoConfig, mask_isnobal, model_type, csys, dir_m):
        """
        Args:
            topoConfig:   config section for topo from smrf config
            mask_isnobal: Boolean for masking iSnobal
            model_type:   Type of snow model
            csys:         Coordinate system id
            dir_m:        Directory in which to write mask if needed

        """
        self.topoConfig = topoConfig

        #logger.debug('Reading in topo info for AWSM')
        # read images
        self.img_type = self.topoConfig['type']
        if self.img_type == 'ipw':
            self.readImages()
        elif self.img_type == 'netcdf':
            self.readNetCDF()

        # assign path to mask, write mask if needed
        # only needed if running iSnobal from ipw, not PySnobal
        if mask_isnobal and model_type == 'isnobal':
            if self.img_type == 'netcdf':
                # assign path
                self.fp_mask = os.path.join(dir_m, 'run_mask.ipw')
                # write mask ipw file
                i_out = ipw.IPW()
                i_out.new_band(self.mask)
                i_out.add_geo_hdr([self.u, self.v], [self.du, self.dv],
                                  self.units, csys)
                i_out.write(self.fp_mask, 16)

            elif self.img_type == 'ipw':
                self.fp_mask = self.topoConfig['mask']
        else:
            self.fp_mask = None

        # make masks one if not masking model
        if not mask_isnobal:
            self.mask = np.ones_like(self.dem)
示例#8
0
def get_topo_stats(fp, filetype='netcdf'):
    """
    Get stats about topo from the topo file
    Returns:
        ts - dictionary of topo header data
    """

    fp = os.path.abspath(fp)

    ts = {}

    if filetype == 'netcdf':
        ds = Dataset(fp, 'r')
        ts['units'] = ds.variables['y'].units
        y = ds.variables['y'][:]
        x = ds.variables['x'][:]
        ts['nx'] = len(x)
        ts['ny'] = len(y)
        ts['du'] = y[1] - y[0]
        ts['dv'] = x[1] - x[0]
        ts['v'] = x[0]
        ts['u'] = y[0]
        ts['x'] = x
        ts['y'] = y
        ds.close()

    if filetype == 'ipw':
        i = ipw.IPW(fp)
        ts['nx'] = i.nsamps
        ts['ny'] = i.nlines
        ts['units'] = i.bands[0].units
        ts['du'] = i.bands[0].dline
        ts['dv'] = i.bands[0].dsamp
        ts['v'] = float(i.bands[0].bsamp)
        ts['u'] = float(i.bands[0].bline)
        ts['csys'] = i.bands[0].coord_sys_ID
        ts['x'] = ts['v'] + ts['dv'] * np.arange(ts['nx'])
        ts['y'] = ts['u'] + ts['du'] * np.arange(ts['ny'])

    return ts
示例#9
0
    def get_ipw(self):
        """
        Set init fields for iSnobal out as init file
        """
        i_in = ipw.IPW(self.init_file)
        self.init['z_0'] = i_in.bands[1].data*self.topo.mask  # snow depth

        self.logger.warning('Using roughness from iSnobal ipw init file for initializing of model!')

        self.init['z_s'] = i_in.bands[2].data*self.topo.mask  # snow depth
        self.init['rho'] = i_in.bands[3].data*self.topo.mask  # snow density

        self.init['T_s_0'] = i_in.bands[4].data*self.topo.mask  # active layer temp

        # get bands depending on if there is a lower layer or not
        if len(i_in.bands) == 8:
            self.init['T_s_l'] = i_in.bands[5].data*self.topo.mask  # lower layer temp
            self.init['T_s'] = i_in.bands[6].data*self.topo.mask  # avgerage snow temp
            self.init['h2o_sat'] = i_in.bands[7].data*self.topo.mask  # percent saturation

        elif len(i_in.bands) == 7:
            self.init['T_s'] = i_in.bands[5].data*self.topo.mask  # avgerage snow temp
            self.init['h2o_sat'] = i_in.bands[6].data*self.topo.mask  # percent saturation
示例#10
0
du = -100
dv = 100
units = 'm'
csys = 'UTM'
nx = 1500
ny = 1500

nbits = 16

# create the x,y vectors
x = v + dv * np.arange(nx)
y = u + du * np.arange(ny)

#------------------------------------------------------------------------------
# band 0 - DEM
d = ipw.IPW('dem.ipw')
dem = d.bands[0].data

#------------------------------------------------------------------------------
# band 1 - roughness length
rough = 0.005 * np.ones(dem.shape)

#------------------------------------------------------------------------------
# band 2 - total snowcover depth
depth = np.zeros(dem.shape)

#------------------------------------------------------------------------------
# band 3 - average snowcover density
density = np.zeros(dem.shape)

#------------------------------------------------------------------------------
示例#11
0
    def do_update_isnobal(self, myawsm, update_info, update_snow, x, y):
        """
        Function to read in an output file and update it with the lidar depth field

        Argument:
            myawsm: instantiated awsm class
            update_info: update info pandas at correct index
            update_snow: file pointer to snow update image
            x: x vector
            y: y vector
        Returns:
            init_file: file pointer to init image
        """
        # get some info
        update_number = update_info['number']
        date = update_info['date_time']
        wyhr = update_info['wyhr']

        last_snow_image = ipw.IPW(update_snow)
        z_s = last_snow_image.bands[0].data  # Get modeled depth image.
        # z_s(mask==0) = NaN;

        ##  Continue as before:
        density = last_snow_image.bands[1].data.copy()  # Get density image.
        ## ## ## ## ## ## ## ## ## %
        # SPECIAL CASE... insert adjusted densities here:
        # density = arcgridread_v2(['/Volumes/data/blizzard/Tuolumne/lidar/snowon/2017' ...
        #                 '/adjusted_rho/TB2017' date_mmdd '_operational_rho_ARSgrid_50m.asc']);
        ## ## ## ## ## ## ## ## ## %
        m_s = last_snow_image.bands[2].data.copy()  # Get SWE image.
        T_s_0 = last_snow_image.bands[4].data.copy(
        )  # Get active snow layer temperature image
        T_s_l = last_snow_image.bands[5].data.copy(
        )  # Get lower snow layer temperature image
        T_s = last_snow_image.bands[6].data.copy(
        )  # Get average snowpack temperature image
        h2o_sat = last_snow_image.bands[8].data.copy(
        )  # Get liquid water saturation image

        updated_fields = self.hedrick_updating_procedure(
            m_s, T_s_0, T_s_l, T_s, h2o_sat, density, z_s, x, y, update_info)

        # write init file
        out_file = 'init_update_{}_wyhr{:04d}.ipw'.format(update_number, wyhr)
        init_file = os.path.join(self.pathinit, out_file)
        i_out = ipw.IPW()
        i_out.new_band(updated_fields['dem'])
        i_out.new_band(updated_fields['z0'])
        i_out.new_band(updated_fields['D'])
        i_out.new_band(updated_fields['rho'])
        i_out.new_band(updated_fields['T_s_0'])
        i_out.new_band(updated_fields['T_s_l'])
        i_out.new_band(updated_fields['T_s'])
        i_out.new_band(updated_fields['h2o_sat'])
        #i_out.add_geo_hdr([u, v], [du, dv], units, csys)
        i_out.add_geo_hdr([self.topo.u, self.topo.v],
                          [self.topo.du, self.topo.dv], self.topo.units,
                          self.csys)
        i_out.write(init_file, self.nbits)

        ##  Import newly-created init file and look at images to make sure they line up:
        self._logger.info('Wrote ipw image for update {}'.format(wyhr))

        return init_file
示例#12
0
# ZRU 5/10/2019

# file pointers (mostly)
fp_veg_height = '/home/zachuhlmann/projects/zenodo_WRR_data/static_grids/tuolx_vegheight_50m.ipw'
fp_veg_type = '/home/zachuhlmann/projects/zenodo_WRR_data/static_grids/tuolx_vegnlcd_50m.ipw'
fp_veg_tau = '/home/zachuhlmann/projects/zenodo_WRR_data/static_grids/tuolx_vegtau_50m.ipw'
fp_veg_k = '/home/zachuhlmann/projects/zenodo_WRR_data/static_grids/tuolx_vegk_50m.ipw'
fp_dem = '/home/zachuhlmann/projects/zenodo_WRR_data/static_grids/tuolx_dem_50m.ipw'
fp_mask = '/home/zachuhlmann/projects/zenodo_WRR_data/static_grids/tuolx_hetchy_mask_50m.ipw'

ts = get_topo_stats(fp_veg_height,
                    filetype='ipw')  # collects all the coordinate data

# Add all the layers
var_data = {}
var_data['veg_type'] = ipw.IPW(fp_veg_type).bands[0].data
var_data['veg_height'] = ipw.IPW(fp_veg_height).bands[0].data
var_data['veg_tau'] = ipw.IPW(fp_veg_tau).bands[0].data
var_data['veg_k'] = ipw.IPW(fp_veg_k).bands[0].data
var_data['dem'] = ipw.IPW(fp_dem).bands[0].data
var_data['mask'] = ipw.IPW(fp_mask).bands[0].data
var_data['x'] = ts['x']
var_data['y'] = ts['y']
tmp = var_data['veg_type'].round()
print('41 ', ((tmp == 41).sum()) / (tmp.shape[0] * tmp.shape[1]))
x = np.where(tmp == 41)
print(x[1][2])
print(x[0][2])

# # Not quite automated, but it will do
# var_list = ['veg_type', 'veg_height', 'veg_tau', 'veg_k', 'dem', 'mask']
示例#13
0
def run():

    fmt_file = fmt = '%Y%m%d'
    #basin = 'SJ'
    basin = 'TB'
    wy = 2017
    fpdir = '/home/micahsandusky/Code/awsfTesting/newupdatetest'

    sj_updates = {}
    sj_updates[2018] = ['2018-04-23', '2018-05-28']
    sj_updates[2017] = []
    # date_lst = ['2018-04-23', '2018-05-28']

    tuol_updates = {}
    tuol_updates[2013] = ['2013-04-03', '2013-04-29', '2013-05-03', '2013-05-25',
                          '2013-06-01', '2013-06-08']
    tuol_updates[2014] = ['2014-03-23', '2014-04-07', '2014-04-13', '2014-04-20',
                          '2014-04-28', '2014-05-02', '2014-05-11', '2014-05-17',
                          '2014-05-27', '2014-05-31', '2014-06-05']
    tuol_updates[2015] = ['2015-02-18', '2015-03-06', '2015-03-25', '2015-04-03',
                          '2015-04-09', '2015-04-15', '2015-04-27', '2015-05-01',
                          '2015-05-28', '2015-06-08']
    tuol_updates[2016] = ['2016-03-26', '2016-04-07', '2016-04-16',
                          '2016-04-26', '2016-05-09', '2016-05-27', '2016-06-07',
                          '2016-06-13', '2016-06-20', '2016-06-25', '2016-07-01',
                          '2016-07-08']
    tuol_updates[2017] = ['2017-01-29', '2017-03-03', '2017-04-01',
                          '2017-05-02', '2017-06-04', '2017-07-09', '2017-07-17',
                          '2017-08-16']

    #tuol_updates[2016] = ['2016-04-16', '2016-04-26']

    if basin == 'TB':
        date_lst = tuol_updates[wy]

    # put into datetime
    date_lst = [pd.to_datetime(dt+' 23:00') for dt in date_lst]
    tzinfo = pytz.timezone('UTC')
    tmp_date = date_lst[0]
    tmp_date = tmp_date.replace(tzinfo=tzinfo)
    # find start of water year
    tmpwy = utils.water_day(tmp_date)[1]
    wy = tmpwy
    start_date = pd.to_datetime('{:d}-10-01'.format(tmpwy-1))

    # get the paths
    fp_lst = ['wy{}/{}{}_SUPERsnow_depth.asc'.format(wy, basin, dt.strftime(fmt_file))
              for dt in date_lst]
    fp_lst = [os.path.join(fpdir,fpu) for fpu in fp_lst]

    if basin == 'TB':
        dem_fp = '/data/blizzard/tuolumne/common_data/topo/tuolx_dem_50m.ipw'
        gisPath = '/home/micahsandusky/Code/awsfTesting/initUpdate/'
        maskPath = os.path.join(gisPath, 'tuolx_mask_50m.ipw')
        if wy < 2017:
            maskPath = os.path.join(gisPath, 'tuolx_hetchy_mask_50m.ipw')
    elif basin == 'SJ':
        dem_fp = '/data/blizzard/sanjoaquin/common_data/topo/SJ_dem_50m.ipw'
        gisPath = '/data/blizzard/sanjoaquin/common_data/topo/'
        maskPath = os.path.join(gisPath, 'SJ_Millerton_mask_50m.ipw')
    else:
        raise ValueError('Wrong basin name')

    mask = ipw.IPW(maskPath).bands[0].data[:]

    output_path = os.path.join(fpdir, 'wy{}'.format(wy))
    fname = 'flight_depths_{}'.format(basin)
    nanval = -9999.0
    nanup = 1000.0


    # #### Now actually do the stuff ####
    # date to use for finding wy
    fname = fname+'_{}'.format(tmpwy)

    # get topo stats from dem
    ts = get_topo_stats(dem_fp, filetype = 'ipw')
    x = ts['x'] # + ts['dv']*np.arange(ts['nx'])
    y = ts['y'] # + ts['du']*np.arange(ts['ny'])

    # get depth array
    depth_arr = read_flight(fp_lst, ts, nanval = nanval, nanup = nanup)

    print(depth_arr)
    # create netcdfs
    ds = output_files(output_path, fname, start_date, x,  y)

    # write to file
    for idt, dt in enumerate(date_lst):
        data = depth_arr[idt,:]#*mask'
        data[mask == 0.0] = np.nan
        output_timestep(ds, data, dt, idt, start_date)

    # close file
    ds.close()
示例#14
0
            update_num))
    previous_update_dir = 'run.{}'.format(q)
    output_dir = 'output_update'
    add_in = '_update'
else:
    previous_update_dir = 'run.'.format(previous_update_dir)
    output_dir = 'output_update'

#gisPath = '/data/blizzard/Tuolumne/common_data/topo/'
gisPath = '/home/micahsandusky/Code/awsfTesting/initUpdate/'
###chdir(os.path.join(basePath,dataDir))
###runPath = os.path.join(basePath,runDir,previous_update_dir,output_dir)
#last_snow_image = ipw.IPW(os.path.join(runPath, 'snow.{}'.format(wyhr)))
#last_snow_image = ipw.IPW('/home/micahsandusky/Code/awsfTesting/initUpdate/snow.5999')
#last_snow_image = ipw.IPW('/home/micahsandusky/Code/awsfTesting/newupdatetest/snow.5999')
last_snow_image = ipw.IPW(
    '/home/micahsandusky/Code/awsfTesting/newupdatetest/snow.2879')

demPath = os.path.join(gisPath, 'tuolx_dem_50m.{}'.format(filetype[0:3]))
if int(wy) <= 2015:  # Model domain was only above Hetchy before 2016.
    maskPath = os.path.join(gisPath,
                            'tuolx_hetchy_mask_50m.{}'.format(filetype[0:3]))
else:
    maskPath = os.path.join(gisPath, 'tuolx_mask_50m.{}'.format(filetype[0:3]))

z0Path = os.path.join(gisPath, 'tuolx_z0_50m.{}'.format(filetype[0:3]))
if filetype == 'ipw':
    demstruct = ipw.IPW(demPath)
    dem = demstruct.bands[0].data
    mask = ipw.IPW(maskPath)
    mask = mask.bands[0].data
    z0 = ipw.IPW(z0Path)
示例#15
0
import h5py
from smrf import ipw
import numpy as np
import matplotlib.pyplot as plt
import getCDF as gcdf

''' sanity check to make sure topo_wrr18.nc was created properly.  really, why 42s are
where there should be 41 in vegtype'''

fp_topo = '/home/zachuhlmann/projects/Hedrick_WRR_2018/tuol_topo_wrr18.nc'
fp_veg_type = '/home/zachuhlmann/projects/zenodo_WRR_data/static_grids/tuolx_vegnlcd_50m.ipw'

gcdf_obj = gcdf.GetCDF()
gcdf_obj.get_topo(fp_topo)
ipw_array = ipw.IPW(fp_veg_type).bands[0].data
ipw_array = ipw_array.astype(np.int8)
nc_array = np.array(gcdf_obj.topo['veg_type'])

# ipw_array[gcdf_obj.mask == False] = np.nan
ipw_array = np.ma.masked_where(gcdf_obj.mask == False, nc_array)
ipw_array = ipw_array[gcdf_obj.trim_to_NA_extent()]
ipw_array = np.reshape(ipw_array, (gcdf_obj.nrows_trim, gcdf_obj.ncols_trim))
nc_array = np.ma.masked_where(gcdf_obj.mask == False, nc_array)
nc_array = nc_array[gcdf_obj.trim_to_NA_extent()]
nc_array = np.reshape(nc_array, (gcdf_obj.nrows_trim, gcdf_obj.ncols_trim))

fig, axs = plt.subplots(ncols =3, nrows =1)
axs[0].imshow(ipw_array)
axs[1].imshow(nc_array)
mp = axs[2].imshow(ipw_array - nc_array)
fig.colorbar(mp, ax=axs[2], fraction=0.04, pad=0.04, orientation = 'horizontal', extend = 'max')
示例#16
0
from smrf import ipw

file_name = 'topo.nc'

f = {
    'dem': 'dem.ipw',
    'mask': 'mask.ipw',
    'veg_height': 'veg_height.ipw',
    'veg_k': 'veg_k.ipw',
    'veg_tau': 'veg_tau.ipw',
    'veg_type': 'veg_type.ipw'
}

# get the x,y
d = ipw.IPW(f['dem'])
x = d.bands[0].x
y = d.bands[0].y

# create the netCDF file
s = nc.Dataset(file_name, 'w', format='NETCDF4', clobber=True)

# add dimensions
dimensions = ['y', 'x']
s.createDimension(dimensions[0], y.shape[0])
s.createDimension(dimensions[1], x.shape[0])

# create the variables
s.createVariable('y', 'f', dimensions[0])
s.createVariable('x', 'f', dimensions[1])
示例#17
0
def ipw2nc_mea(myawsm, runtype):
    '''
    Function to create netcdf files from iSnobal output. Reads the snow and em
    ouptuts in the 'output' folder and stores them in snow.nc and em.nc one
    directory up.

    Args:
        myawsm: AWSM instance
        runtype: either 'smrf' for standard run or 'forecast' for gridded data run
    '''
    myawsm._logger.info("making the NetCDF files from ipw"
                        " files for {}".format(runtype))

    if runtype != 'smrf' and runtype != 'forecast':
        myawsm._logger.error('Wrong run type given to ipw2nc. '
                             'not smrf or forecast')
        sys.exit()

    myawsm._logger.info("convert all .ipw output files to netcdf files")
    #######################################################################
    # Convert all .ipw output files to netcdf files #####################
    #######################################################################
    time_zone = myawsm.tmz
    # create the x,y vectors
    x = myawsm.topo.x
    y = myawsm.topo.y

    # ========================================================================
    # NetCDF EM image
    # ========================================================================
    m = {}
    m['name'] = [
        'net_rad', 'sensible_heat', 'latent_heat', 'snow_soil',
        'precip_advected', 'sum_EB', 'evaporation', 'snowmelt', 'SWI',
        'cold_content'
    ]
    m['units'] = [
        'W m-2', 'W m-2', 'W m-2', 'W m-2', 'W m-2', 'W m-2', 'kg m-2',
        'kg m-2', 'kg or mm m-2', 'J m-2'
    ]
    m['description'] = [
        'Average net all-wave radiation', 'Average sensible heat transfer',
        'Average latent heat exchange', 'Average snow/soil heat exchange',
        'Average advected heat from precipitation',
        'Average sum of EB terms for snowcover', 'Total evaporation',
        'Total snowmelt', 'Total runoff', 'Snowcover cold content'
    ]

    if runtype == 'smrf':
        netcdfFile = os.path.join(myawsm.pathrr, 'em.nc')
    elif runtype == 'forecast':
        netcdfFile = os.path.join(myawsm.pathrr, 'em_forecast.nc')

    dimensions = ('time', 'y', 'x')
    em = nc.Dataset(netcdfFile, 'w')

    # create the dimensions
    em.createDimension('time', None)
    em.createDimension('y', myawsm.topo.ny)
    em.createDimension('x', myawsm.topo.nx)

    # create some variables
    em.createVariable('time', 'f', dimensions[0])
    em.createVariable('y', 'f', dimensions[1])
    em.createVariable('x', 'f', dimensions[2])

    setattr(em.variables['time'], 'units', 'hours since %s' % myawsm.wy_start)
    setattr(em.variables['time'], 'calendar', 'standard')
    setattr(em.variables['time'], 'time_zone', time_zone)
    em.variables['x'][:] = x
    em.variables['y'][:] = y

    # em image
    for i, v in enumerate(m['name']):
        em.createVariable(v, 'f', dimensions[:3], chunksizes=(24, 10, 10))
        setattr(em.variables[v], 'units', m['units'][i])
        setattr(em.variables[v], 'description', m['description'][i])

    em.setncattr_string('source', 'AWSM {}'.format(myawsm.gitVersion))
    # ========================================================================
    # NetCDF SNOW image
    # ========================================================================

    s = {}
    s['name'] = [
        'thickness', 'snow_density', 'specific_mass', 'liquid_water',
        'temp_surf', 'temp_lower', 'temp_snowcover', 'thickness_lower',
        'water_saturation'
    ]
    s['units'] = [
        'm', 'kg m-3', 'kg m-2', 'kg m-2', 'C', 'C', 'C', 'm', 'percent'
    ]
    s['description'] = [
        'Predicted thickness of the snowcover',
        'Predicted average snow density',
        'Predicted specific mass of the snowcover',
        'Predicted mass of liquid water in the snowcover',
        'Predicted temperature of the surface layer',
        'Predicted temperature of the lower layer',
        'Predicted temperature of the snowcover',
        'Predicted thickness of the lower layer',
        'Predicted percentage of liquid water'
        ' saturation of the snowcover'
    ]

    if runtype == 'smrf':
        netcdfFile = os.path.join(myawsm.pathrr, 'snow.nc')
    elif runtype == 'forecast':
        netcdfFile = os.path.join(myawsm.pathrr, 'snow_forescast.nc')

    dimensions = ('time', 'y', 'x')
    snow = nc.Dataset(netcdfFile, 'w')

    # create the dimensions
    snow.createDimension('time', None)
    snow.createDimension('y', myawsm.topo.ny)
    snow.createDimension('x', myawsm.topo.nx)

    # create some variables
    snow.createVariable('time', 'f', dimensions[0])
    snow.createVariable('y', 'f', dimensions[1])
    snow.createVariable('x', 'f', dimensions[2])

    setattr(snow.variables['time'], 'units',
            'hours since %s' % myawsm.wy_start)
    setattr(snow.variables['time'], 'calendar', 'standard')
    setattr(snow.variables['time'], 'time_zone', time_zone)
    snow.variables['x'][:] = x
    snow.variables['y'][:] = y

    # snow image
    for i, v in enumerate(s['name']):

        snow.createVariable(v, 'f', dimensions[:3], chunksizes=(6, 10, 10))
        setattr(snow.variables[v], 'units', s['units'][i])
        setattr(snow.variables[v], 'description', s['description'][i])

    h = '[{}] Data added or updated'.format(datetime.now().strftime("%Y%m%d"))
    snow.setncattr_string('last modified', h)
    snow.setncattr_string('AWSM version', myawsm.gitVersion)
    if myawsm.do_smrf:
        snow.setncattr_string('SMRF version', myawsm.smrf_version)

    # =======================================================================
    # Get all files in the directory, open ipw file, and add to netCDF
    # =======================================================================

    # get all the files in the directory
    d = sorted(glob.glob("%s/snow*" % myawsm.pathro), key=os.path.getmtime)

    d.sort(key=lambda f: os.path.splitext(f))
    # find a drop any netcdfs in directory
    d = [ddp for ddp in d if '.nc' not in ddp]
    # pbar = progressbar.ProgressBar(max_value=len(d)).start()
    j = 0

    for idf, f in enumerate(d):
        # print out counter at certain percentages. pbar doesn't play nice
        # with logging
        if j == int(len(d) / 4):
            myawsm._logger.info("25 percent finished with "
                                "making NetCDF files!")
        if j == int(len(d) / 2):
            myawsm._logger.info("50 percent finished with "
                                "making NetCDF files!")
        if j == int(3 * len(d) / 4):
            myawsm._logger.info("75 percent finished with "
                                "making NetCDF files!")

        # get the hr
        nm = os.path.basename(f)
        head = os.path.dirname(f)
        hr = int(nm.split('.')[1])
        # hr = int(hr)
        snow.variables['time'][j] = hr  # +1
        em.variables['time'][j] = hr  # +1

        # Read the IPW file
        i = ipw.IPW(f)

        # output to the snow netcdf file
        for b, var in enumerate(s['name']):
            snow.variables[var][j, :] = i.bands[b].data

        # output to the em netcdf file
        # emFile = "%s/%s.%04i" % (head, 'em', hr)
        emFile = os.path.join(head, 'em.%04i' % (hr))
        i_em = ipw.IPW(emFile)
        for b, var in enumerate(m['name']):
            em.variables[var][j, :] = i_em.bands[b].data

        snow.setncattr_string('last modified', h)
        snow.setncattr_string('AWSM version', myawsm.gitVersion)
        if myawsm.do_smrf:
            snow.setncattr_string('SMRF version', myawsm.smrf_version)

        em.sync()
        snow.sync()
        j += 1

        # pbar.update(j)
    # pbar.finish()
    snow.close()
    em.close()

    myawsm._logger.info("Finished making the NetCDF "
                        "files from iSnobal output!")
示例#18
0
nc_topo.variables['x'][:] = x
nc_topo.variables['y'][:] = y

# snow image
for i, v in enumerate(s['name']):
    nc_topo.createVariable(v, 'f', ['y', 'x'], chunksizes=(10, 10))
    setattr(nc_topo.variables[v], 'units', s['units'][i])
    setattr(nc_topo.variables[v], 'description', s['description'][i])
    setattr(nc_topo.variables[v], 'long_name', s['long_name'][i])

#===============================================================================
# open ipw file, and add to netCDF
#===============================================================================
for f, var in zip(s['file'], s['name']):
    # Read the IPW file
    i = ipw.IPW(f)
    # assign to netcdf
    tmp = i.bands[0].data
    plt.imshow(tmp)
    plt.colorbar()
    plt.show()
    nc_topo.variables[var][:] = i.bands[0].data
    nc_topo.sync()

#===============================================================================
# set attributes
#===============================================================================
# the y variable attributes
nc_topo.variables['y'].setncattr('units', 'meters')
nc_topo.variables['y'].setncattr('description', 'UTM, north south')
nc_topo.variables['y'].setncattr('long_name', 'y coordinate')