示例#1
0
    def test_formulate_smt_constraints_convolution_layer_text(self):
        with self.test_session():
            # Temporary graphs should be created inside a session. Notice multiple
            # graphs are being created in this particular code. So, if each graph
            # isn't created inside a separate session, the tensor names will have
            # unwanted integer suffices, which then would cause problems while
            # accessing tensors by name.
            _create_temporary_tf_graph_text_cnn(self.test_model_path)

        # The 1st convolution layer has 12 neurons.
        image = np.ones(5)
        tensor_names = {
            'input': 'input_1:0',
            'embedding': 'embedding/embedding_lookup/Identity_1:0',
            'first_layer': 'conv1d/BiasAdd:0',
            'first_layer_relu': 'conv1d/Relu:0',
            'logits': 'dense/BiasAdd:0',
            'softmax': 'dense/Sigmoid:0',
            'weights_layer_1': 'conv1d/conv1d/ExpandDims_1:0',
            'biases_layer_1': 'conv1d/BiasAdd/ReadVariableOp:0'
        }
        session = utils.restore_model(self.test_model_path)
        cnn_predictions = session.run(
            tensor_names,
            feed_dict={tensor_names['input']: image.reshape(1, 5)})
        text_embedding = masking._remove_batch_axis(
            cnn_predictions['embedding'])
        z3_mask = [
            z3.Int('mask_%d' % i) for i in range(text_embedding.shape[0])
        ]
        masked_input = []
        for mask_bit, embedding_row in zip(z3_mask, text_embedding):
            masked_input.append(
                [z3.ToReal(mask_bit) * i for i in embedding_row])
        first_layer_activations = masking._reorder(
            masking._remove_batch_axis(
                cnn_predictions['first_layer'])).reshape(-1)
        z3_optimizer = masking._formulate_smt_constraints_convolution_layer(
            z3_optimizer=utils.TextOptimizer(z3_mask=z3_mask),
            kernels=masking._reshape_kernels(
                kernels=cnn_predictions['weights_layer_1'],
                model_type='text_cnn'),
            biases=cnn_predictions['biases_layer_1'],
            chosen_indices=first_layer_activations.argsort()[-5:],
            conv_activations=first_layer_activations,
            input_activation_maps=[masked_input],
            output_activation_map_shape=masking._get_activation_map_shape(
                activation_maps_shape=cnn_predictions['first_layer'].shape,
                model_type='text_cnn'),
            strides=1,
            padding=(0, 0),
            gamma=0.5)
        mask, result = z3_optimizer.generate_mask()

        self.assertEqual(result, 'sat')
        self.assertEqual(mask.shape, (5, ))
        session.close()
示例#2
0
    def test_reshape_kernels(self, model_type, reshaped_dimensions):
        activation_maps_shape = tuple(np.random.randint(low=1, high=10,
                                                        size=4))

        reshaped_kernel = masking._reshape_kernels(
            kernels=np.ones(activation_maps_shape), model_type=model_type)

        self.assertEqual(reshaped_kernel.shape,
                         (activation_maps_shape[reshaped_dimensions[0]],
                          activation_maps_shape[reshaped_dimensions[1]],
                          activation_maps_shape[reshaped_dimensions[2]],
                          activation_maps_shape[reshaped_dimensions[3]]))