def reallynonZHC(): for M in snappy.OrientableCuspedCensus(cusps=1, betti=1): G = M.fundamental_group() phi = snappy.snap.nsagetools.MapToFreeAbelianization(G) m, l = [phi(g)[0] for g in G.peripheral_curves()[0]] if gcd(m, l) != 1: print(M.name(), m, l)
def test_polished(dec_prec=200): def test_manifold(manifold): eqns = manifold.gluing_equations('rect') shapes = manifold.tetrahedra_shapes('rect', dec_prec=dec_prec) return snap.shapes.gluing_equation_error(eqns, shapes) def test_census(name, census): manifolds = [M for M in census] print('Checking gluing equations for %d %s manifolds' % (len(manifolds), name)) max_error = pari(0) for i, M in enumerate(manifolds): max_error = max(max_error, test_manifold(M)) print('\r ' + repr((i, M)).ljust(35) + ' Max error so far: %.2g' % float(max_error), end='') print() test_census('cusped census', snappy.OrientableCuspedCensus(filter='cusps>1')[-100:]) test_census('closed census', snappy.OrientableClosedCensus()[-100:]) test_census('4-component links', [ M for M in snappy.LinkExteriors(num_cusps=4) if M.solution_type() == 'all tetrahedra positively oriented' ])
def test_peripheral_curves(n=100, progress=True): """ >>> test_peripheral_curves(5, False) """ census = snappy.OrientableCuspedCensus(cusps=1) for i in range(n): M = census.random() if progress: print(M.name()) Triangulation(M)
def test_peripheral_curves(n=100, progress=True): """ sage: test_peripheral_curves(5, False) """ import snappy census = snappy.OrientableCuspedCensus(cusps=1) for i in range(n): M = census.random() if progress: print(M.name()) peripheral_curve_package(M)
def initial_database(): names = [] for M in snappy.OrientableCuspedCensus(cusps=1): M.dehn_fill((1, 0)) if M.homology().order() == 1: names.append(M.name()) cols = [('volume', 'double'), ('tets', 'int'), ('inS3', 'tinyint'), ('alex', 'text'), ('alex_deg', 'int'), ('alex_monic', 'tinyint'), ('num_uniroots', 'int'), ('num_mult_uniroots', 'int'), ('num_psl2R_arcs', 'int'), ('real_places', 'int'), ('parabolic_PSL2R', 'int'), ('base_index', 'int'), ('radius', 'double'), ('transa_rcs', 'mediumblob')] db = taskdb2.ExampleDatabase('ZHCircles', names, cols) db.new_task_table('task0') return db
def main_test(): import snappy censuses = [snappy.OrientableClosedCensus[:100], snappy.OrientableCuspedCensus(filter='tets<7'), snappy.NonorientableClosedCensus, snappy.NonorientableCuspedCensus, snappy.CensusKnots(), snappy.HTLinkExteriors(filter='cusps>3 and volume<14'), [snappy.Manifold(name) for name in asymmetric]] tests = 0 for census in censuses: for M in census: isosig = decorated_isosig(M, snappy.Triangulation) N = snappy.Triangulation(isosig) assert same_peripheral_curves(M, N), M assert isosig == decorated_isosig(N, snappy.Triangulation), M assert M.homology() == N.homology() tests += 1 print('Tested decorated isosig encode/decode on %d triangulations' % tests)
def test_many_cores(cores=8): pool = multiprocessing.Pool(8) manifolds = list(snappy.OrientableCuspedCensus(tet=9)[:n]) return pool.map(complex_volume, manifolds)
def test_one_core(): return [ complex_volume(M) for M in snappy.OrientableCuspedCensus(tet=9)[:n] ]
def __init__(self): ManifoldRecognizer.__init__(self, snappy.OrientableCuspedCensus(), standard_hashes)
# This is a python script to verify all manifolds in the cusped census. To show that a manifold is # hyperbolic we only need to show that one triangulation of a given manifold is provably hyperbolic # by our method. In fact, we show that either the given triangulation of snappy is provably hyperbolic # or the canonical triangulation is. Although with enough precision, one should be able to verify # that all triangulations in the census are hyperbolic, checking either one is sufficient for our # purposes. import hikmot import snappy Census = snappy.OrientableCuspedCensus() print_data = 0 save_data = 0 num_goods = 0 BadList = [] num_bads = 0 old_num_bads = 0 print("Iterating over {0} manifolds...".format( len(snappy.OrientableCuspedCensus()))) i = 0 for M in snappy.OrientableCuspedCensus(): i = i + 1 N = M.copy() error_data = None known_canonized = False while not known_canonized: try:
def cusped_test(N=100): for census in [snappy.CensusKnots, snappy.OrientableCuspedCensus(cusps=1)]: for M in census: print(M) compare_cusped(M)
def run_tests(num_to_check=10, smaller_num_to_check = 10): import taut veering_isosigs = parse_data_file("Data/veering_census.txt") print("testing is_taut") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) assert taut.is_taut(tri, angle), sig print("testing isosig round trip") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) recovered_sig = taut.isosig_from_tri_angle(tri, angle) assert sig == recovered_sig, sig # we only test this round trip - the other round trip does not # make sense because tri->isosig is many to one. import transverse_taut print("testing is_transverse_taut") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) assert transverse_taut.is_transverse_taut(tri, angle), sig non_transverse_taut_isosigs = parse_data_file("Data/veering_non_transverse_taut_examples.txt") print("testing not is_transverse_taut") for sig in non_transverse_taut_isosigs: tri, angle = taut.isosig_to_tri_angle(sig) assert not transverse_taut.is_transverse_taut(tri, angle), sig import veering print("testing is_veering") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) assert veering.is_veering(tri, angle), sig # tri, angle = taut.isosig_to_tri_angle("cPcbbbdxm_10") # explore_mobius_surgery_graph(tri, angle, max_tetrahedra = 12) # # tests to see that it makes only veering triangulations as it goes import veering_dehn_surgery print("testing veering_dehn_surgery") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) for face_num in veering_dehn_surgery.get_mobius_strip_indices(tri): (tri_s, angle_s, face_num_s) = veering_dehn_surgery.veering_mobius_dehn_surgery(tri, angle, face_num) assert veering.is_veering(tri_s, angle_s), sig import veering_fan_excision print("testing veering_fan_excision") m003, _ = taut.isosig_to_tri_angle('cPcbbbdxm_10') m004, _ = taut.isosig_to_tri_angle('cPcbbbiht_12') for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) tet_types = veering.is_veering(tri, angle, return_type = "tet_types") if tet_types.count("toggle") == 2: excised_tri, _ = veering_fan_excision.excise_fans(tri, angle) assert ( excised_tri.isIsomorphicTo(m003) != None or excised_tri.isIsomorphicTo(m004) != None ), sig import pachner print("testing pachner with taut structure") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) face_num = random.randrange(tri.countTriangles()) result = pachner.twoThreeMove(tri, face_num, angle = angle, return_edge = True) if result != False: tri2, angle2, edge_num = result tri3, angle3 = pachner.threeTwoMove(tri2, edge_num, angle = angle2) assert taut.isosig_from_tri_angle(tri, angle) == taut.isosig_from_tri_angle(tri3, angle3), sig import branched_surface import regina print("testing branched_surface and pachner with branched surface") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) tri_original = regina.Triangulation3(tri) #copy branch = branched_surface.upper_branched_surface(tri, angle, return_lower = random.choice([True, False])) ### test branch isosig round trip sig_with_branch = branched_surface.isosig_from_tri_angle_branch(tri, angle, branch) tri2, angle2, branch2 = branched_surface.isosig_to_tri_angle_branch(sig_with_branch) assert (branch == branch2) and (angle == angle2), sig branch_original = branch[:] #copy face_num = random.randrange(tri.countTriangles()) out = pachner.twoThreeMove(tri, face_num, branch = branch, return_edge = True) if out != False: tri, possible_branches, edge_num = out tri, branch = pachner.threeTwoMove(tri, edge_num, branch = possible_branches[0]) all_isoms = tri.findAllIsomorphisms(tri_original) all_branches = [branched_surface.apply_isom_to_branched_surface(branch, isom) for isom in all_isoms] assert branch_original in all_branches, sig import flow_cycles import drill print("testing taut and branched drill + semiflows on drillings") for sig in random.sample(veering_isosigs, smaller_num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) branch = branched_surface.upper_branched_surface(tri, angle) ### also checks for veering and transverse taut found_loops = flow_cycles.find_flow_cycles(tri, branch) for loop in random.sample(found_loops, min(len(found_loops), 5)): ## drill along at most 5 loops tri, angle = taut.isosig_to_tri_angle(sig) branch = branched_surface.upper_branched_surface(tri, angle) tri_loop = flow_cycles.flow_cycle_to_triangle_loop(tri, branch, loop) if tri_loop != False: if not flow_cycles.tri_loop_is_boundary_parallel(tri_loop, tri): drill.drill(tri, tri_loop, angle = angle, branch = branch, sig = sig) assert branched_surface.has_non_sing_semiflow(tri, branch), sig print("all basic tests passed") try: import snappy import snappy_util snappy_working = True except: print("failed to import from snappy?") snappy_working = False if snappy_working: print("testing algebraic intersection") census = snappy.OrientableCuspedCensus() # not a set or list, so can't use random.sample for i in range(10): M = random.choice(census) n = M.num_cusps() peripheral_curves = M.gluing_equations()[-2*n:] for i in range(2*n): for j in range(i, 2*n): alg_int = snappy_util.algebraic_intersection(peripheral_curves[i], peripheral_curves[j]) if i % 2 == 0 and j == i + 1: assert alg_int == 1, M.name() else: assert alg_int == 0, M.name() if snappy_working: import veering_drill_midsurface_bdy print("testing veering drilling and filling") for sig in random.sample(veering_isosigs[:3000], num_to_check): T, per = veering_drill_midsurface_bdy.drill_midsurface_bdy(sig) M = snappy.Manifold(T.snapPea()) M.set_peripheral_curves("shortest") L = snappy_util.get_slopes_from_peripherals(M, per) M.dehn_fill(L) N = snappy.Manifold(sig.split("_")[0]) assert M.is_isometric_to(N), sig if snappy_working: print("all tests depending on snappy passed") # try: # from hashlib import md5 # from os import remove # import pyx # from boundary_triangulation import draw_triangulation_boundary_from_veering_isosig # pyx_working = True # except: # print("failed to import from pyx?") # pyx_working = False # ladders_style_sigs = { # "cPcbbbiht_12": "f34c1fdf65db9d02994752814803ae01", # "gLLAQbecdfffhhnkqnc_120012": "091c85b4f4877276bfd8a955b769b496", # "kLALPPzkcbbegfhgijjhhrwaaxnxxn_1221100101": "a0f15a8454f715f492c74ce1073a13a4", # } # geometric_style_sigs = { # "cPcbbbiht_12": "1e74d0b68160c4922e85a5adb20a0f1d", # "gLLAQbecdfffhhnkqnc_120012": "856a1fce74eb64f519bcda083303bd8f", # "kLALPPzkcbbegfhgijjhhrwaaxnxxn_1221100101": "33bd23b34c5d977a103fa50ffe63120a", # } # args = { # "draw_boundary_triangulation":True, # "draw_triangles_near_poles": False, # "ct_depth":-1, # "ct_epsilon":0.03, # "global_drawing_scale": 4, # "delta": 0.2, # "ladder_width": 10.0, # "ladder_height": 20.0, # "draw_labels": True, # } # shapes_data = read_from_pickle("Data/veering_shapes_up_to_ten_tetrahedra.pkl") # if pyx_working: # for sig in ladders_style_sigs: # print("testing boundary triangulation pictures, ladder style", sig) # args["tet_shapes"] = shapes_data[sig] # args["style"] = "ladders" # file_name = draw_triangulation_boundary_from_veering_isosig(sig, args = args) # f = open(file_name, "rb") # file_hash = md5(f.read()) # assert file_hash.hexdigest() == ladders_style_sigs[sig] # f.close() # remove(file_name) # if pyx_working: # for sig in geometric_style_sigs: # print("testing boundary triangulation pictures, ladder style", sig) # args["tet_shapes"] = shapes_data[sig] # args["style"] = "geometric" # file_name = draw_triangulation_boundary_from_veering_isosig(sig, args = args) # f = open(file_name, "rb") # file_hash = md5(f.read()) # assert file_hash.hexdigest() == geometric_style_sigs[sig] # f.close() # remove(file_name) # if pyx_working: # print("all tests depending on pyx passed") veering_polys = { "cPcbbbiht_12": [-4, -1, 1, 4], "eLMkbcddddedde_2100": [-2, -2, -2, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 2, 2], "gLLAQbecdfffhhnkqnc_120012": [-1, -1, -1, -1, 1, 1, 1, 1], "gLLPQcdfefefuoaaauo_022110": [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1], } # veering_polys = { ### old # "cPcbbbiht_12": "a^3 - 4*a^2 + 4*a - 1", # "eLMkbcddddedde_2100": "a^6*b - a^6 - 2*a^5*b - a^4*b^2 + a^5 + 2*a^4*b + a^3*b^2 - 2*a^3*b + a^3 + 2*a^2*b + a*b^2 - a^2 - 2*a*b - b^2 + b", # "gLLAQbecdfffhhnkqnc_120012": "a^7 + a^6 + a^5 + a^4 - a^3 - a^2 - a - 1", # "gLLPQcdfefefuoaaauo_022110": "a^12*b^3 - a^11*b^2 - a^10*b^3 - a^10*b^2 - a^7*b^3 - a^7*b^2 - a^6*b^3 + a^7*b + a^5*b^2 - a^6 - a^5*b - a^5 - a^2*b - a^2 - a*b + 1", # } taut_polys = { "cPcbbbiht_12": [-3, 1, 1], "eLMkbcddddedde_2100": [-1, -1, -1, 1, 1], "iLLAwQcccedfghhhlnhcqeesr_12001122": [], } # taut_polys = { ### old # "cPcbbbiht_12": "a^2 - 3*a + 1", # "eLMkbcddddedde_2100": "a^2*b - a^2 - a*b - b^2 + b", # "iLLAwQcccedfghhhlnhcqeesr_12001122": "0", # } torus_bundles = [ "cPcbbbiht_12", "eLMkbcdddhhqqa_1220", "gLMzQbcdefffhhqqqdl_122002", ] measured = [ "gLLAQbecdfffhhnkqnc_120012", "iLLALQcccedhgghhlnxkxrkaa_12001112", "iLLAwQcccedfghhhlnhcqeesr_12001122", ] empties = [ "fLAMcaccdeejsnaxk_20010", "gLALQbcbeeffhhwsras_211220", "hLALAkbcbeefgghhwsraqj_2112202", ] try: from sage.rings.integer_ring import ZZ sage_working = True except: print("failed to import from sage?") sage_working = False if sage_working: import taut_polytope print("testing is_layered") for sig in veering_isosigs[:17]: assert taut_polytope.is_layered(sig), sig for sig in veering_isosigs[17:21]: assert not taut_polytope.is_layered(sig), sig if sage_working: import fibered print("testing is_fibered") mflds = parse_data_file("Data/mflds_which_fiber.txt") mflds = [line.split("\t")[0:2] for line in mflds] for (name, kind) in random.sample(mflds, num_to_check): assert fibered.is_fibered(name) == (kind == "fibered"), name if sage_working: import veering_polynomial import taut_polynomial print("testing veering poly") for sig in veering_polys: p = veering_polynomial.veering_polynomial(sig) assert check_polynomial_coefficients(p, veering_polys[sig]), sig ### Nov 2021: sage 9.4 changed how smith normal form works, which changed our polynomials ### to equivalent but not equal polynomials. To avoid this kind of change breaking things ### in the future, we changed to comparing the list of coefficients. # assert p.__repr__() == veering_polys[sig] print("testing taut poly") for sig in taut_polys: p = taut_polynomial.taut_polynomial_via_tree(sig) assert check_polynomial_coefficients(p, taut_polys[sig]), sig # assert p.__repr__() == taut_polys[sig] print("testing divide") for sig in random.sample(veering_isosigs[:3000], num_to_check): p = veering_polynomial.veering_polynomial(sig) q = taut_polynomial.taut_polynomial_via_tree(sig) if q == 0: assert p == 0, sig else: assert q.divides(p), sig if sage_working: print("testing alex") for sig in random.sample(veering_isosigs[:3000], num_to_check): snap_sig = sig.split("_")[0] M = snappy.Manifold(snap_sig) if M.homology().betti_number() == 1: assert taut_polynomial.taut_polynomial_via_tree(sig, mode = "alexander") == M.alexander_polynomial(), sig if sage_working: # would be nice to automate this - need to fetch the angle # structure say via z_charge.py... print("testing is_torus_bundle") for sig in torus_bundles: assert taut_polytope.is_torus_bundle(sig), sig if sage_working: # ditto print("testing is_layered") for sig in torus_bundles: assert taut_polytope.is_layered(sig), sig print("testing measured") for sig in measured: assert taut_polytope.LMN_tri_angle(sig) == "M", sig print("testing empty") for sig in empties: assert taut_polytope.LMN_tri_angle(sig) == "N", sig if sage_working: # warning - this takes random amounts of time! print("testing hom dim") for sig in random.sample(veering_isosigs[:3000], 3): # magic number # dimension = zero if and only if nothing is carried. assert (taut_polytope.taut_cone_homological_dim(sig) == 0) == (taut_polytope.LMN_tri_angle(sig) == "N"), sig if sage_working: boundary_cycles = { ("eLMkbcddddedde_2100",(2,5,5,1,3,4,7,1)): "((-7, -7, 0, 0, 4, -3, 7, 0), (7, 7, 0, 0, -4, 3, -7, 0))", ("iLLLQPcbeegefhhhhhhahahha_01110221",(0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0)): "((0, 0, -1, 1, 1, 0, 1, 1, -1, 0, 0, 0, 0, 1, 0, 1), (0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1))", ("ivvPQQcfhghgfghfaaaaaaaaa_01122000",(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)): "((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0), (-2, 0, -3, 1, 2, -1, 0, 2, -1, 0, 3, 1, -2, 1, 0, -1), (0, -2, 1, -3, 0, -1, 2, 0, -1, 2, -1, 1, 0, 1, -2, 3))", } taut_polys_with_cycles = { ("eLMkbcddddedde_2100", ((7, 7, 0, 0, -4, 3, -7, 0),)): [-1, -1, -1, 1, 1], ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): [1, 1, 2], ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): [-4, -1, -1, 1, 1], } # taut_polys_with_cycles = { # ("eLMkbcddddedde_2100", ((7, 7, 0, 0, -4, 3, -7, 0),)): "a^14 - a^8 - a^7 - a^6 + 1", # ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): "a^2 + 2*a + 1", # ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): "a*b^2 - a^2 - 4*a*b - b^2 + a", # } taut_polys_image = { ('eLMkbcddddedde_2100', ((7, 8, -1, 0, -4, 4, -8, 0),)):[-1, -1, -1, 1, 1], ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2),)):[-2, -2, -1, -1, 1, 1], ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))):[-4, -1, -1, 1, 1] } # taut_polys_image = { # ('eLMkbcddddedde_2100', ((7, 8, -1, 0, -4, 4, -8, 0),)):"a^16 - a^9 - a^8 - a^7 + 1", # ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2),)):"a*b^2*c - 2*a*b*c - b^2*c - a^2 - 2*a*b + a", # ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))):"a*b^2 - a^2 - 4*a*b - b^2 + a" # } alex_polys_with_cycles = { ("eLMkbcddddedde_2100",((7, 7, 0, 0, -4, 3, -7, 0),)): [-2, -1, -1, -1, 1, 1, 1, 2], ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): [-3, -1, 1, 3], ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): [-1, -1, 1, 1], } # alex_polys_with_cycles = { # ("eLMkbcddddedde_2100",((7, 7, 0, 0, -4, 3, -7, 0),)): "a^15 - a^14 + a^9 - 2*a^8 + 2*a^7 - a^6 + a - 1", # ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): "3*a^3 - a^2 + a - 3", # ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): "a*b^2 - a^2 - b^2 + a", # } if sage_working: import taut_carried print("testing boundary cycles") for sig, surface in boundary_cycles: surface_list = list(surface) cycles = taut_carried.boundary_cycles_from_surface(sig, surface_list) cycles = tuple(tuple(cycle) for cycle in cycles) assert cycles.__repr__() == boundary_cycles[(sig, surface)], sig if sage_working: print("testing taut with cycles") for sig, cycles in taut_polys_with_cycles: cycles_in = [list(cycle) for cycle in cycles] p = taut_polynomial.taut_polynomial_via_tree(sig, cycles_in) assert check_polynomial_coefficients(p, taut_polys_with_cycles[(sig, cycles)]), sig # assert p.__repr__() == taut_polys_with_cycles[(sig, cycles)] if sage_working: print("testing taut with images") for sig, cycles in taut_polys_image: cycles_in = [list(cycle) for cycle in cycles] p = taut_polynomial.taut_polynomial_image(sig, cycles_in) assert check_polynomial_coefficients(p, taut_polys_image[(sig, cycles)]), sig # assert p.__repr__() == taut_polys_image[(sig, cycles)] if sage_working: print("testing alex with cycles") for sig, cycles in alex_polys_with_cycles: cycles_in = [list(cycle) for cycle in cycles] p = taut_polynomial.taut_polynomial_via_tree(sig, cycles_in, mode = "alexander") assert check_polynomial_coefficients(p, alex_polys_with_cycles[(sig, cycles)]), sig # assert p.__repr__() == alex_polys_with_cycles[(sig, cycles)] if sage_working: import edge_orientability import taut_euler_class print("testing euler and edge orientability") for sig in random.sample(veering_isosigs[:3000], 3): # Theorem: If (tri, angle) is edge orientable then e = 0. assert not ( edge_orientability.is_edge_orientable(sig) and (taut_euler_class.order_of_euler_class_wrapper(sig) == 2) ), sig if sage_working: # Theorem: If (tri, angle) is edge orientable then taut poly = alex poly. # taut_polynomial.taut_polynomial_via_tree(sig, mode = "alexander") == # taut_polynomial.taut_polynomial_via_tree(sig, mode = "taut") pass if sage_working: print("testing exotics") for sig in random.sample(veering_isosigs[:3000], 3): tri, angle = taut.isosig_to_tri_angle(sig) T = veering.veering_triangulation(tri, angle) is_eo = T.is_edge_orientable() for angle in T.exotic_angles(): assert taut_polytope.taut_cone_homological_dim(tri, angle) == 0, sig assert is_eo == transverse_taut.is_transverse_taut(tri, angle), sig ### test for drill_midsurface_bdy: drill then fill, check you get the same manifold if sage_working: from sage.combinat.words.word_generators import words from sage.modules.free_module_integer import IntegerLattice from sage.modules.free_module import VectorSpace from sage.matrix.constructor import Matrix import z_charge import z2_taut import regina ZZ2 = ZZ.quotient(ZZ(2)) sig_starts = ["b+-LR", "b++LR"] print("testing lattice for punc torus bundle") for i in range(3): for sig_start in sig_starts: sig = sig_start + str(words.RandomWord(8, 2, "LR")) # 8 is a magic number M = snappy.Manifold(sig) tri = regina.Triangulation3(M) t, A = z_charge.sol_and_kernel(M) B = z_charge.leading_trailing_deformations(M) C = z2_taut.cohomology_loops(tri) AA = IntegerLattice(A) BB = IntegerLattice(B) assert AA == BB.saturation(), sig dim = 3*M.num_tetrahedra() V = VectorSpace(ZZ2, dim) AA = V.subspace(A) BB = V.subspace(B) CM = Matrix(ZZ2, C) CC = CM.right_kernel() assert AA.intersection(CC) == BB , sig ## so l-t defms are the part of the kernel that doesn't flip over if sage_working: print("testing charges for punc torus bundle") for i in range(3): for sig_start in sig_starts: sig = sig_start + str(words.RandomWord(8, 2, "LR")) # 8 is a magic number M = snappy.Manifold(sig) assert z_charge.can_deal_with_reduced_angles(M), sig if sage_working: import carried_surface import mutation print("testing building carried surfaces and mutations") sigs_weights = [ ['iLLLPQccdgefhhghqrqqssvof_02221000', (0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)], ['jLLAvQQcedehihiihiinasmkutn_011220000', (2, 0, 1, 0, 0, 0, 1, 2, 0, 2, 0, 2, 1, 0, 0, 0, 1, 0)], ['jLLAvQQcedehihiihiinasmkutn_011220000', (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)], ['jLLLMPQcdgfhfhiiihshassspiq_122201101', (0, 0, 4, 0, 4, 1, 0, 2, 2, 0, 1, 0, 0, 4, 0, 4, 0, 0)] ] strata = [ ((1, 2), [2, 2]), ((2, 4), [5, 5, 1, 1]), ((0, 3), [2, 0, 0]), ((6, 1), [22]) ] orders_of_veering_symmetry_groups = [4, 2, 2, 2] for i in range(len(sigs_weights)): tri, angle = taut.isosig_to_tri_angle(sigs_weights[i][0]) weights = sigs_weights[i][1] surface, edge_colours = carried_surface.build_surface(tri, angle, weights, return_edge_colours = True) assert strata[i] == carried_surface.stratum_from_weights_surface(weights, surface) veering_isoms = carried_surface.veering_symmetry_group(surface, edge_colours) assert len(veering_isoms) == orders_of_veering_symmetry_groups[i] isom = veering_isoms[1] mutation.mutate(tri, angle, weights, isom, quiet = True) if i == 0: assert tri.isoSig() == 'ivLLQQccfhfeghghwadiwadrv' #print('svof to wadrv passed') elif i == 1: assert tri.isoSig() == 'jvLLAQQdfghhfgiiijttmtltrcr' #print('smkutn to tltrcr passed') elif i == 2: assert tri.isoSig() == 'jLLMvQQcedehhiiihiikiwnmtxk' #print('smkutn to mtxk passed') elif i == 3: assert tri.isoSig() == 'jLLALMQcecdhggiiihqrwqwrafo' #print('spiq to rafo passed') if sage_working: print("all tests depending on sage passed")
def test_spun(): for M in snappy.OrientableCuspedCensus(tets=8): print M.name() compare_spun(M)
def test_regina(): for M in snappy.OrientableCuspedCensus(tets=8): M = t3m.Mcomplex(M) M.find_normal_surfaces(algorithm='FXrays')
# This is a python script to verify all manifolds in the cusped census. To show that a manifold is # hyperbolic we only need to show that one triangulation of a given manifold is provably hyperbolic # by our method. In fact, we show that either the given triangulation of snappy is provably hyperbolic # or the canonical triangulation is. Although with enough precision, one should be able to verify # that all triangulations in the census are hyperbolic, checking either one is sufficient for our # purposes. import hikmot import snappy Census = snappy.OrientableCuspedCensus() print snappy.OrientableCuspedCensus() # print_data = 0 # save_data = 0 # GoodList=[] # BadList=[] # for M in snappy.OrientableCuspedCensus(): # N = M.copy() # N.canonize() # print len(GoodList) # if (hikmot.verify_hyperbolicity(N,False)[0] or hikmot.verify_hyperbolicity(M,False)[0]): # and M.is_isometric_to(N): # GoodList.append(N) # else: # BadList.append(N) # print " N=",N, " M=",M, " iso ", M.is_isometric_to(N), " hikmot ", hikmot.verify_hyperbolicity(M,print_data, save_data)[0] # print 'Out of', len(Census), ' manifolds in the OrientableCuspedCensus,', len(GoodList), ' have been proven to be hyperbolic and ', len(BadList), ' have not.'