def get_required_resources(self): required_resources = self.tfidf_vectorizer_config \ .get_required_resources() if self.cooccurrence_vectorizer_config: required_resources = merge_required_resources( required_resources, self.cooccurrence_vectorizer_config.get_required_resources()) return required_resources
def get_required_resources(self): # Resolving custom slot values must be done without stemming resources = { CUSTOM_ENTITY_PARSER_USAGE: CustomEntityParserUsage.WITHOUT_STEMS } for config in self.intent_parsers_configs: resources = merge_required_resources( resources, config.get_required_resources()) return resources
def get_required_resources(self): # Import here to avoid circular imports from snips_nlu.slot_filler.feature_factory import get_feature_factory resources = self.data_augmentation_config.get_required_resources() for config in self.feature_factory_configs: factory = get_feature_factory(config) resources = merge_required_resources( resources, factory.get_required_resources()) return resources
def get_required_resources(self): resources = self.intent_classifier_config.get_required_resources() resources = merge_required_resources( resources, self.slot_filler_config.get_required_resources()) return resources
def get_required_resources(self): resources = self.data_augmentation_config.get_required_resources() resources = merge_required_resources( resources, self.featurizer_config.get_required_resources()) return resources
def get_required_resources(self): resources = dict() for config in self.intent_parsers_configs: resources = merge_required_resources( resources, config.get_required_resources()) return resources