示例#1
0
 def __init__(self, input_model, config):
     AbstractModelParser.__init__(self, input_model, config)
     self._layer_dict = {'DenseLayer': 'Dense',
                         'Conv2DLayer': 'Conv2D',
                         'Conv2DDNNLayer': 'Conv2D',
                         'MaxPool2DLayer': 'MaxPooling2D',
                         'Pool2DLayer': 'AveragePooling2D',
                         'DropoutLayer': 'Dropout',
                         'FlattenLayer': 'Flatten',
                         'BatchNormLayer': 'BatchNormalization',
                         'NonlinearityLayer': 'Activation',
                         'ConcatLayer': 'Concatenate',
                         'GlobalPoolLayer': 'GlobalAveragePooling2D'}
     self.activation_dict = {'rectify': 'relu',
                             'softmax': 'softmax',
                             'binary_tanh_unit': 'binary_tanh',
                             'binary_sigmoid_unit': 'binary_sigmoid',
                             'linear': 'linear'}
示例#2
0
 def __init__(self, input_model, config):
     AbstractModelParser.__init__(self, input_model, config)
     self._layer_dict = {
         'InnerProduct': 'Dense',
         'Convolution': 'Conv2D',
         'MaxPooling2D': 'MaxPooling2D',
         'AveragePooling2D': 'AveragePooling2D',
         'ReLU': 'Activation',
         'Softmax': 'Activation',
         'Concat': 'Concatenate',
         'LPInnerProduct': 'Dense',
         'LPConvolution': 'Conv2D',
         'LPAct': 'Activation'
     }
     self.activation_dict = {
         'ReLU': 'relu',
         'Softmax': 'softmax',
         'Sigmoid': 'sigmoid',
         'LPAct': 'relu'
     }
 def initialize_attributes(self, layer=None):
     attributes = AbstractModelParser.initialize_attributes(self)
     attributes.update(layer.get_config())
     return attributes