示例#1
0
    def __init__(
        self,
        lang_dir: Pathlike,
        scripted_model_path: Optional[Pathlike] = None,
        model_dir: Optional[Pathlike] = None,
        average_epochs: Sequence[int] = (7, 8, 9),
        device: torch.device = 'cpu',
        sampling_rate: int = 16000,
    ):
        if isinstance(device, str):
            self.device = torch.device(device)

        self.sampling_rate = sampling_rate
        self.extractor = Fbank(FbankConfig(num_mel_bins=80))
        self.lexicon = Lexicon(lang_dir)
        phone_ids = self.lexicon.phone_symbols()
        self.P = create_bigram_phone_lm(phone_ids)

        if model_dir is not None:
            # Read model from regular checkpoints, assume it's a Conformer
            self.model = Conformer(num_features=80,
                                   num_classes=len(phone_ids) + 1,
                                   num_decoder_layers=0)
            self.P.scores = torch.zeros_like(self.P.scores)
            self.model.P_scores = torch.nn.Parameter(self.P.scores.clone(),
                                                     requires_grad=False)
            average_checkpoint(filenames=[
                model_dir / f'epoch-{n}.pt' for n in average_epochs
            ],
                               model=self.model)
        elif scripted_model_path is not None:
            # Read model from a serialized TorchScript module, no assumptions needed
            self.model = torch.jit.load(scripted_model_path)
        else:
            raise ValueError(
                "One of scripted_model_path or model_dir needs to be provided."
            )

        # Freeze the params by default.
        for p in self.model.parameters():
            p.requires_grad_(False)
        self.compiler = MmiTrainingGraphCompiler(lexicon=self.lexicon,
                                                 device=self.device)
        self.HLG = k2.Fsa.from_dict(torch.load(lang_dir / 'HLG.pt')).to(
            self.device)
def main():
    args = get_parser().parse_args()

    model_type = args.model_type
    start_epoch = args.start_epoch
    num_epochs = args.num_epochs
    max_duration = args.max_duration
    accum_grad = args.accum_grad
    att_rate = args.att_rate

    fix_random_seed(42)

    exp_dir = Path('exp-' + model_type + '-noam-ctc-att-musan-sa')
    setup_logger('{}/log/log-train'.format(exp_dir))
    tb_writer = SummaryWriter(
        log_dir=f'{exp_dir}/tensorboard') if args.tensorboard else None

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
    word_symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')

    logging.info("Loading L.fst")
    if (lang_dir / 'Linv.pt').exists():
        L_inv = k2.Fsa.from_dict(torch.load(lang_dir / 'Linv.pt'))
    else:
        with open(lang_dir / 'L.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
            L_inv = k2.arc_sort(L.invert_())
            torch.save(L_inv.as_dict(), lang_dir / 'Linv.pt')

    graph_compiler = CtcTrainingGraphCompiler(L_inv=L_inv,
                                              phones=phone_symbol_table,
                                              words=word_symbol_table)
    phone_ids = get_phone_symbols(phone_symbol_table)

    # load dataset
    feature_dir = Path('exp/data')
    logging.info("About to get train cuts")
    cuts_train = load_manifest(feature_dir / 'cuts_train-clean-100.json.gz')
    if args.full_libri:
        cuts_train = (
            cuts_train +
            load_manifest(feature_dir / 'cuts_train-clean-360.json.gz') +
            load_manifest(feature_dir / 'cuts_train-other-500.json.gz'))
    logging.info("About to get dev cuts")
    cuts_dev = (load_manifest(feature_dir / 'cuts_dev-clean.json.gz') +
                load_manifest(feature_dir / 'cuts_dev-other.json.gz'))
    logging.info("About to get Musan cuts")
    cuts_musan = load_manifest(feature_dir / 'cuts_musan.json.gz')

    logging.info("About to create train dataset")
    transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
    if args.concatenate_cuts:
        logging.info(
            f'Using cut concatenation with duration factor {args.duration_factor} and gap {args.gap}.'
        )
        # Cut concatenation should be the first transform in the list,
        # so that if we e.g. mix noise in, it will fill the gaps between different utterances.
        transforms = [
            CutConcatenate(duration_factor=args.duration_factor, gap=args.gap)
        ] + transforms
    train = K2SpeechRecognitionDataset(cuts_train,
                                       cut_transforms=transforms,
                                       input_transforms=[
                                           SpecAugment(num_frame_masks=2,
                                                       features_mask_size=27,
                                                       num_feature_masks=2,
                                                       frames_mask_size=100)
                                       ])

    if args.on_the_fly_feats:
        # NOTE: the PerturbSpeed transform should be added only if we remove it from data prep stage.
        # # Add on-the-fly speed perturbation; since originally it would have increased epoch
        # # size by 3, we will apply prob 2/3 and use 3x more epochs.
        # # Speed perturbation probably should come first before concatenation,
        # # but in principle the transforms order doesn't have to be strict (e.g. could be randomized)
        # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2 / 3)] + transforms
        # Drop feats to be on the safe side.
        cuts_train = cuts_train.drop_features()
        from lhotse.features.fbank import FbankConfig
        train = K2SpeechRecognitionDataset(
            cuts=cuts_train,
            cut_transforms=transforms,
            input_strategy=OnTheFlyFeatures(Fbank(
                FbankConfig(num_mel_bins=80))),
            input_transforms=[
                SpecAugment(num_frame_masks=2,
                            features_mask_size=27,
                            num_feature_masks=2,
                            frames_mask_size=100)
            ])

    if args.bucketing_sampler:
        logging.info('Using BucketingSampler.')
        train_sampler = BucketingSampler(cuts_train,
                                         max_duration=max_duration,
                                         shuffle=True,
                                         num_buckets=args.num_buckets)
    else:
        logging.info('Using SingleCutSampler.')
        train_sampler = SingleCutSampler(
            cuts_train,
            max_duration=max_duration,
            shuffle=True,
        )
    logging.info("About to create train dataloader")
    train_dl = torch.utils.data.DataLoader(
        train,
        sampler=train_sampler,
        batch_size=None,
        num_workers=4,
    )

    logging.info("About to create dev dataset")
    if args.on_the_fly_feats:
        cuts_dev = cuts_dev.drop_features()
        validate = K2SpeechRecognitionDataset(
            cuts_dev.drop_features(),
            input_strategy=OnTheFlyFeatures(Fbank(
                FbankConfig(num_mel_bins=80))))
    else:
        validate = K2SpeechRecognitionDataset(cuts_dev)
    valid_sampler = SingleCutSampler(
        cuts_dev,
        max_duration=max_duration,
    )
    logging.info("About to create dev dataloader")
    valid_dl = torch.utils.data.DataLoader(validate,
                                           sampler=valid_sampler,
                                           batch_size=None,
                                           num_workers=1)

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    logging.info("About to create model")
    device_id = 0
    device = torch.device('cuda', device_id)

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers)
    else:
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers)

    model.to(device)
    describe(model)

    optimizer = Noam(model.parameters(),
                     model_size=args.attention_dim,
                     factor=1.0,
                     warm_step=args.warm_step)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    for epoch in range(start_epoch, num_epochs):
        train_sampler.set_epoch(epoch)
        curr_learning_rate = optimizer._rate
        if tb_writer is not None:
            tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                                 global_batch_idx_train)
            tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            device=device,
            graph_compiler=graph_compiler,
            optimizer=optimizer,
            accum_grad=accum_grad,
            att_rate=att_rate,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
        )
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            optimizer=None,
                            scheduler=None,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        optimizer=optimizer,
                        scheduler=None,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch)

    logging.warning('Done')
示例#3
0
class ASR:
    """
    This class is a high-level wrapper for K2 acoustic models that simplifies inference:
    reading models, computing posteriors, decoding, alignments, etc.

    Currently it will only work with the Conformer model with a very specific HMM topology.
    It could be the basis for a more generic entry point to Snow(Ice?)fall.
    """
    def __init__(
        self,
        lang_dir: Pathlike,
        scripted_model_path: Optional[Pathlike] = None,
        model_dir: Optional[Pathlike] = None,
        average_epochs: Sequence[int] = (7, 8, 9),
        device: torch.device = 'cpu',
        sampling_rate: int = 16000,
    ):
        if isinstance(device, str):
            self.device = torch.device(device)

        self.sampling_rate = sampling_rate
        self.extractor = Fbank(FbankConfig(num_mel_bins=80))
        self.lexicon = Lexicon(lang_dir)
        phone_ids = self.lexicon.phone_symbols()
        self.P = create_bigram_phone_lm(phone_ids)

        if model_dir is not None:
            # Read model from regular checkpoints, assume it's a Conformer
            self.model = Conformer(num_features=80,
                                   num_classes=len(phone_ids) + 1,
                                   num_decoder_layers=0)
            self.P.scores = torch.zeros_like(self.P.scores)
            self.model.P_scores = torch.nn.Parameter(self.P.scores.clone(),
                                                     requires_grad=False)
            average_checkpoint(filenames=[
                model_dir / f'epoch-{n}.pt' for n in average_epochs
            ],
                               model=self.model)
        elif scripted_model_path is not None:
            # Read model from a serialized TorchScript module, no assumptions needed
            self.model = torch.jit.load(scripted_model_path)
        else:
            raise ValueError(
                "One of scripted_model_path or model_dir needs to be provided."
            )

        # Freeze the params by default.
        for p in self.model.parameters():
            p.requires_grad_(False)
        self.compiler = MmiTrainingGraphCompiler(lexicon=self.lexicon,
                                                 device=self.device)
        self.HLG = k2.Fsa.from_dict(torch.load(lang_dir / 'HLG.pt')).to(
            self.device)

    def compute_features(self, cuts: Union[AnyCut, CutSet]) -> torch.Tensor:
        if isinstance(cuts, (Cut, MixedCut)):
            cuts = CutSet.from_cuts([cuts])
        assert cuts[
            0].sampling_rate == self.sampling_rate, f'{cuts[0].sampling_rate} != {self.sampling_rate}'
        otf = OnTheFlyFeatures(self.extractor)
        # feats: (batch, seq_len, n_feats)
        feats, _ = otf(cuts)
        return feats

    def compute_posteriors(self, cuts: Union[AnyCut, CutSet]) -> torch.Tensor:
        """
        Run the forward pass of the acoustic model and return a tensor representing a batch of phone posteriorgrams.
        """
        # Extract feats
        # (batch, seq_len, num_feats)
        if isinstance(cuts, (Cut, MixedCut)):
            cuts = CutSet.from_cuts([cuts])
        assert cuts[
            0].sampling_rate == self.sampling_rate, f'{cuts[0].sampling_rate} != {self.sampling_rate}'
        otf = OnTheFlyFeatures(self.extractor)
        # feats: (batch, seq_len, n_feats)
        feats, _ = otf(cuts)
        # feats: (batch, n_feats, seq_len)
        feats = feats.permute(0, 2, 1)

        # Compute AM posteriors
        # posteriors: (batch, n_phones, ~seq_len / 4)
        posteriors, _, _ = self.model(feats)
        # returns: (batch, ~seq_len / 4, n_phones)
        return posteriors.permute(0, 2, 1)

    def decode(
            self, cuts: Union[AnyCut,
                              CutSet]) -> List[Tuple[List[str], List[str]]]:
        """
        Perform decoding with an n-gram language model (HLG graph).
        Doesn't support rescoring at this time.
        """
        if isinstance(cuts, (Cut, MixedCut)):
            cuts = CutSet.from_cuts([cuts])
        word_results = []
        # Hacky way to get batch quickly... we may need to improve on this.
        batch = K2SpeechRecognitionDataset(cuts,
                                           input_strategy=OnTheFlyFeatures(
                                               self.extractor),
                                           check_inputs=False)[list(cuts.ids)]
        features = batch['inputs'].permute(0, 2, 1).to(
            self.device)  # (B, T, F) -> (B, F, T)
        supervision_segments, texts = encode_supervisions(
            batch['supervisions'])

        # Forward pass through the acoustic model
        posteriors, _, _ = self.model(features)
        posteriors = posteriors.permute(0, 2, 1)  # (B, F, T) -> (B, T, F)

        # Wrapping into k2 "dense FSA" (representing PPG as a dense graph)
        dense_fsa_vec = k2.DenseFsaVec(posteriors, supervision_segments)

        # The actual decoding starts here:
        # First, we intersect the HLG and the PPG
        # with default pruning/beam search params from snowfall
        # The result is a batch of graphs (lattices)
        lattices = k2.intersect_dense_pruned(self.HLG, dense_fsa_vec, 20.0, 8,
                                             30, 10000)
        # ... then we find the shortest paths in the lattices ...
        best_paths = k2.shortest_path(lattices, use_double_scores=True)
        # ... and convert them to words with a convenience wrapper from snowfall
        hyps = get_texts(best_paths, torch.arange(len(texts)))

        # Here we read out the words from the best path graphs
        for i in range(len(texts)):
            hyp_words = [self.lexicon.words.get(x) for x in hyps[i]]
            ref_words = texts[i].split(' ')
            word_results.append((ref_words, hyp_words))
        return word_results

    def align(self, cuts: Union[AnyCut, CutSet]) -> torch.Tensor:
        """
        Perform forced alignment and return a tensor that represents a batch of frame-level alignments:
        >>> alignments = torch.tensor([
        ...     [0, 0, 0, 1, 57, 57, 35, 35, 35, ...],
        ...     [...],
        ...     ...
        ... ])

        :return: an int32 tensor with shape ``(batch_size, num_frames)``.
        """
        # Extract feats
        # (batch, seq_len, num_feats)
        if isinstance(cuts, (Cut, MixedCut)):
            cuts = CutSet.from_cuts([cuts])
        assert cuts[
            0].sampling_rate == self.sampling_rate, f'{cuts[0].sampling_rate} != {self.sampling_rate}'

        cuts = cuts.map_supervisions(self.normalize_text)

        otf = OnTheFlyFeatures(self.extractor)
        feats, _ = otf(cuts)
        feats = feats.permute(0, 2, 1)
        texts = [' '.join(s.text for s in cut.supervisions) for cut in cuts]

        # Compute AM posteriors
        # (batch, seq_len ~/ 4, num_phones)
        posteriors, _, _ = self.model(feats)
        # Note: we are using "dummy" supervisions so that the aligner also considers
        # the padding area. We can adjust that behaviour if needed by passing actual
        # supervision segments, but then we will have a ragged tensor (will need to
        # pad the alignments themselves).
        sups = self.dummy_supervisions(feats)
        posteriors_fsa = k2.DenseFsaVec(posteriors.permute(0, 2, 1), sups)

        # Intersection with ground truth transcript graphs
        num, den = self.compiler.compile(texts, self.P)
        alignment = k2.intersect_dense(num, posteriors_fsa, output_beam=10.0)
        best_path = k2.shortest_path(alignment, use_double_scores=True)

        # Retrieve sequences of phone IDs per frame
        # (batch, seq_len ~/ 4) -- dtype int32 (num phone labels)
        frame_labels = torch.stack(
            [best_path[i].labels[:-1] for i in range(best_path.shape[0])])
        return frame_labels

    def align_ctm(self, cuts: Union[CutSet,
                                    AnyCut]) -> List[List[AlignmentItem]]:
        """
        Perform forced alignment and parse the phones into a CTM-like format:
            >>> [[0.0, 0.12, 'SIL'], [0.12, 0.2, 'AH0'], ...]
        """
        # TODO: I am not sure that this method is extracting the alignment 100% correctly:
        #       need to revise...
        # TODO: when K2/Snowfall has a standard way of indicating what is silence,
        #       or we update the model, update the constants below.
        EPS = 0
        SIL = 1
        non_speech = {EPS, SIL}

        def to_s(n: int) -> float:
            FRAME_SHIFT = 0.04  # 0.01 * 4 subsampling
            return round(n * FRAME_SHIFT, ndigits=3)

        if isinstance(cuts, (Cut, MixedCut)):
            cuts = CutSet.from_cuts([cuts])

        # Uppercase and remove punctuation
        cuts = cuts.map_supervisions(self.normalize_text)
        alignments = self.align(cuts).tolist()

        ctm_alis = []
        for cut, alignment in zip(cuts, alignments):
            # First we determine the silence regions at the beginning and the end:
            # we assume that every SIL and <eps> before the first phone, and after the last phone,
            # are representing silence.
            first_speech_idx = [
                idx for idx, s in enumerate(alignment) if s not in non_speech
            ][0]
            last_speech_idx = [
                idx for idx, s in reversed(list(enumerate(alignment)))
                if s not in non_speech
            ][0]
            speech_ali = alignment[first_speech_idx:last_speech_idx]
            ctm_ali = [
                AlignmentItem(start=0.0,
                              duration=to_s(first_speech_idx),
                              symbol=self.lexicon.phones[SIL])
            ]

            # Then, we iterate over the speech region: since the K2 model uses 2-state HMM
            # topology that allows blank (<eps>) to follow a phone symbol, we treat <eps>
            # as continuation of the "previous" phone.
            # TODO: I think this implementation is wrong in that it merges repeating phones...
            #       Will fix.
            # TODO: I think it could be simplified by using some smart semi-ring and FSA operations...
            start = first_speech_idx
            prev_s = speech_ali[0]
            curr_s = speech_ali[0]
            cntr = 1
            for s in speech_ali[1:]:
                curr_s = s if s != EPS else curr_s
                if curr_s != prev_s:
                    ctm_ali.append(
                        AlignmentItem(start=to_s(start),
                                      duration=to_s(cntr),
                                      symbol=self.lexicon.phones[prev_s]))
                    start = start + cntr
                    prev_s = curr_s
                    cntr = 1
                else:
                    cntr += 1
            if cntr:
                ctm_ali.append(
                    AlignmentItem(start=to_s(start),
                                  duration=to_s(cntr),
                                  symbol=self.lexicon.phones[prev_s]))

            speech_end_timestamp = to_s(last_speech_idx)
            if speech_end_timestamp > cut.duration:
                logging.warning(
                    f"speech_end_timestamp <= cut.duration. Skipping cut {cut.id}"
                )
                ctm_alis.append(None)
                continue

            ctm_ali.append(
                AlignmentItem(start=speech_end_timestamp,
                              duration=round(cut.duration -
                                             speech_end_timestamp,
                                             ndigits=8),
                              symbol=self.lexicon.phones[SIL]))
            ctm_alis.append(ctm_ali)

        return ctm_alis

    def plot_alignments(self, cut: AnyCut):
        import matplotlib.pyplot as plt
        feats = self.compute_features(cut)
        phone_ids = self.align(cut)
        fig, axes = plt.subplots(2,
                                 squeeze=True,
                                 sharey=True,
                                 figsize=(10, 14))
        axes[0].imshow(np.flipud(feats[0].T))
        axes[1].imshow(
            torch.nn.functional.one_hot(
                phone_ids.repeat_interleave(4).to(torch.int64)).T)
        return fig, axes

    def plot_posteriors(self, cut: AnyCut):
        import matplotlib.pyplot as plt
        feats = self.compute_features(cut)
        posteriors = self.compute_posteriors(cut)
        fig, axes = plt.subplots(2,
                                 squeeze=True,
                                 sharey=True,
                                 figsize=(10, 14))
        axes[0].imshow(np.flipud(feats[0].T))
        axes[1].imshow(posteriors[0].exp().repeat_interleave(4, 1))
        return fig, axes

    @staticmethod
    def dummy_supervisions(feats):
        def size_after_conv(size, num_layers=2):
            for i in range(num_layers):
                size = (size - 1) // 2
            return size

        return torch.tensor([[
            i,
            size_after_conv(2, num_layers=2),
            size_after_conv(feats.shape[2] - 2, num_layers=2)
        ] for i in range(feats.size(0))],
                            dtype=torch.int32).clamp(min=0)

    @staticmethod
    def normalize_text(supervision):
        text = re.sub(r'[^\w\s]', '', supervision.text.upper())
        return fastcopy(supervision, text=text)
def run(rank, world_size, args):
    '''
    Args:
      rank:
        It is a value between 0 and `world_size-1`, which is
        passed automatically by `mp.spawn()` in :func:`main`.
        The node with rank 0 is responsible for saving checkpoint.
      world_size:
        Number of GPUs for DDP training.
      args:
        The return value of get_parser().parse_args()
    '''
    model_type = args.model_type
    start_epoch = args.start_epoch
    num_epochs = args.num_epochs
    accum_grad = args.accum_grad
    den_scale = args.den_scale
    att_rate = args.att_rate

    fix_random_seed(42)
    setup_dist(rank, world_size, args.master_port)

    exp_dir = Path('exp-' + model_type + '-noam-mmi-att-musan-sa-vgg')
    setup_logger(f'{exp_dir}/log/log-train-{rank}')
    if args.tensorboard and rank == 0:
        tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')
    else:
        tb_writer = None
    #  tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard') if args.tensorboard and rank == 0 else None

    logging.info("Loading lexicon and symbol tables")
    lang_dir = Path('data/lang_nosp')
    lexicon = Lexicon(lang_dir)

    device_id = rank
    device = torch.device('cuda', device_id)

    graph_compiler = MmiTrainingGraphCompiler(
        lexicon=lexicon,
        device=device,
    )
    phone_ids = lexicon.phone_symbols()
    P = create_bigram_phone_lm(phone_ids)
    P.scores = torch.zeros_like(P.scores)
    P = P.to(device)

    mls = MLSAsrDataModule(args)
    train_dl = mls.train_dataloaders()
    valid_dl = mls.valid_dataloaders()

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    logging.info("About to create model")

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    model.P_scores = nn.Parameter(P.scores.clone(), requires_grad=True)

    model.to(device)
    describe(model)

    model = DDP(model, device_ids=[rank])

    # Now for the aligment model, if any
    if args.use_ali_model:
        ali_model = TdnnLstm1b(
            num_features=80,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4)

        ali_model_fname = Path(
            f'exp-lstm-adam-ctc-musan/epoch-{args.ali_model_epoch}.pt')
        assert ali_model_fname.is_file(), \
                f'ali model filename {ali_model_fname} does not exist!'
        ali_model.load_state_dict(
            torch.load(ali_model_fname, map_location='cpu')['state_dict'])
        ali_model.to(device)

        ali_model.eval()
        ali_model.requires_grad_(False)
        logging.info(f'Use ali_model: {ali_model_fname}')
    else:
        ali_model = None
        logging.info('No ali_model')

    optimizer = Noam(model.parameters(),
                     model_size=args.attention_dim,
                     factor=args.lr_factor,
                     warm_step=args.warm_step,
                     weight_decay=args.weight_decay)

    scaler = GradScaler(enabled=args.amp)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer,
                               scaler=scaler)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    for epoch in range(start_epoch, num_epochs):
        train_dl.sampler.set_epoch(epoch)
        curr_learning_rate = optimizer._rate
        if tb_writer is not None:
            tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                                 global_batch_idx_train)
            tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            ali_model=ali_model,
            P=P,
            device=device,
            graph_compiler=graph_compiler,
            optimizer=optimizer,
            accum_grad=accum_grad,
            den_scale=den_scale,
            att_rate=att_rate,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
            world_size=world_size,
            scaler=scaler)
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            optimizer=None,
                            scheduler=None,
                            scaler=None,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train,
                            local_rank=rank)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch,
                               local_rank=rank)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        optimizer=optimizer,
                        scheduler=None,
                        scaler=scaler,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train,
                        local_rank=rank)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch,
                           local_rank=rank)

    logging.warning('Done')
    torch.distributed.barrier()
    cleanup_dist()
示例#5
0
def main():
    parser = get_parser()
    LibriSpeechAsrDataModule.add_arguments(parser)
    args = parser.parse_args()

    model_type = args.model_type
    epoch = args.epoch
    avg = args.avg
    att_rate = args.att_rate
    num_paths = args.num_paths
    use_lm_rescoring = args.use_lm_rescoring
    use_whole_lattice = False
    if use_lm_rescoring and num_paths < 1:
        # It doesn't make sense to use n-best list for rescoring
        # when n is less than 1
        use_whole_lattice = True

    output_beam_size = args.output_beam_size

    exp_dir = Path('exp-' + model_type + '-noam-mmi-att-musan-sa-vgg')
    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    logging.info(f'output_beam_size: {output_beam_size}')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')

    phone_ids = get_phone_symbols(phone_symbol_table)
    P = create_bigram_phone_lm(phone_ids)

    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    model.P_scores = torch.nn.Parameter(P.scores.clone(), requires_grad=False)

    if avg == 1:
        checkpoint = os.path.join(exp_dir, 'epoch-' + str(epoch - 1) + '.pt')
        load_checkpoint(checkpoint, model)
    else:
        checkpoints = [
            os.path.join(exp_dir, 'epoch-' + str(avg_epoch) + '.pt')
            for avg_epoch in range(epoch - avg, epoch)
        ]
        average_checkpoint(checkpoints, model)

    model.to(device)
    model.eval()

    assert P.requires_grad is False
    P.scores = model.P_scores.cpu()
    print_transition_probabilities(P,
                                   phone_symbol_table,
                                   phone_ids,
                                   filename='model_P_scores.txt')

    P.set_scores_stochastic_(model.P_scores)
    print_transition_probabilities(P,
                                   phone_symbol_table,
                                   phone_ids,
                                   filename='P_scores.txt')

    if not os.path.exists(lang_dir / 'HLG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        HLG = compile_HLG(L=L,
                          G=G,
                          H=ctc_topo,
                          labels_disambig_id_start=first_phone_disambig_id,
                          aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(HLG.as_dict(), lang_dir / 'HLG.pt')
    else:
        logging.debug("Loading pre-compiled HLG")
        d = torch.load(lang_dir / 'HLG.pt')
        HLG = k2.Fsa.from_dict(d)

    if use_lm_rescoring:
        if use_whole_lattice:
            logging.info('Rescoring with the whole lattice')
        else:
            logging.info(f'Rescoring with n-best list, n is {num_paths}')
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        if not os.path.exists(lang_dir / 'G_4_gram.pt'):
            logging.debug('Loading G_4_gram.fst.txt')
            with open(lang_dir / 'G_4_gram.fst.txt') as f:
                G = k2.Fsa.from_openfst(f.read(), acceptor=False)
                # G.aux_labels is not needed in later computations, so
                # remove it here.
                del G.aux_labels
                # CAUTION(fangjun): The following line is crucial.
                # Arcs entering the back-off state have label equal to #0.
                # We have to change it to 0 here.
                G.labels[G.labels >= first_word_disambig_id] = 0
                G = k2.create_fsa_vec([G]).to(device)
                G = k2.arc_sort(G)
                torch.save(G.as_dict(), lang_dir / 'G_4_gram.pt')
        else:
            logging.debug('Loading pre-compiled G_4_gram.pt')
            d = torch.load(lang_dir / 'G_4_gram.pt')
            G = k2.Fsa.from_dict(d).to(device)

        if use_whole_lattice:
            # Add epsilon self-loops to G as we will compose
            # it with the whole lattice later
            G = k2.add_epsilon_self_loops(G)
            G = k2.arc_sort(G)
            G = G.to(device)
    else:
        logging.debug('Decoding without LM rescoring')
        G = None

    logging.debug("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)

    if not hasattr(HLG, 'lm_scores'):
        HLG.lm_scores = HLG.scores.clone()

    # load dataset
    librispeech = LibriSpeechAsrDataModule(args)
    test_sets = ['test-clean', 'test-other']
    #  test_sets = ['test-other']
    for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
        logging.info(f'* DECODING: {test_set}')

        results = decode(dataloader=test_dl,
                         model=model,
                         device=device,
                         HLG=HLG,
                         symbols=symbol_table,
                         num_paths=num_paths,
                         G=G,
                         use_whole_lattice=use_whole_lattice,
                         output_beam_size=output_beam_size)

        recog_path = exp_dir / f'recogs-{test_set}.txt'
        store_transcripts(path=recog_path, texts=results)
        logging.info(f'The transcripts are stored in {recog_path}')

        # The following prints out WERs, per-word error statistics and aligned
        # ref/hyp pairs.
        errs_filename = exp_dir / f'errs-{test_set}.txt'
        with open(errs_filename, 'w') as f:
            write_error_stats(f, test_set, results)
        logging.info('Wrote detailed error stats to {}'.format(errs_filename))
示例#6
0
def main():
    parser = get_parser()
    AishellAsrDataModule.add_arguments(parser)
    args = parser.parse_args()

    model_type = args.model_type
    epoch = args.epoch
    avg = args.avg
    att_rate = args.att_rate

    exp_dir = Path('exp-' + model_type + '-noam-mmi-att-musan')
    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')

    phone_ids = get_phone_symbols(phone_symbol_table)
    P = create_bigram_phone_lm(phone_ids)

    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=40,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers)
    else:
        model = Conformer(
            num_features=40,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers)

    model.P_scores = torch.nn.Parameter(P.scores.clone(), requires_grad=False)

    if avg == 1:
        checkpoint = os.path.join(exp_dir, 'epoch-' + str(epoch - 1) + '.pt')
        load_checkpoint(checkpoint, model)
    else:
        checkpoints = [os.path.join(exp_dir, 'epoch-' + str(avg_epoch) + '.pt') for avg_epoch in
                       range(epoch - avg, epoch)]
        average_checkpoint(checkpoints, model)

    model.to(device)
    model.eval()

    assert P.requires_grad is False
    P.scores = model.P_scores.cpu()
    print_transition_probabilities(P, phone_symbol_table, phone_ids, filename='model_P_scores.txt')

    P.set_scores_stochastic_(model.P_scores)
    print_transition_probabilities(P, phone_symbol_table, phone_ids, filename='P_scores.txt')

    if not os.path.exists(lang_dir / 'LG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        LG = compile_LG(L=L,
                        G=G,
                        ctc_topo=ctc_topo,
                        labels_disambig_id_start=first_phone_disambig_id,
                        aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(LG.as_dict(), lang_dir / 'LG.pt')
    else:
        logging.debug("Loading pre-compiled LG")
        d = torch.load(lang_dir / 'LG.pt')
        LG = k2.Fsa.from_dict(d)

    # load dataset
    aishell = AishellAsrDataModule(args)
    test_dl = aishell.test_dataloaders()

    #  if not torch.cuda.is_available():
    #  logging.error('No GPU detected!')
    #  sys.exit(-1)

    logging.debug("convert LG to device")
    LG = LG.to(device)
    LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
    LG.requires_grad_(False)
    logging.debug("About to decode")
    results = decode(dataloader=test_dl,
                     model=model,
                     device=device,
                     LG=LG,
                     symbols=symbol_table)
    s = ''
    results2 = []
    for ref, hyp in results:
        s += f'ref={ref}\n'
        s += f'hyp={hyp}\n'
        results2.append((list(''.join(ref)), list(''.join(hyp))))
    logging.info(s)
    # compute WER
    dists = [edit_distance(r, h) for r, h in results]
    dists2 = [edit_distance(r, h) for r, h in results2]
    errors = {
        key: sum(dist[key] for dist in dists)
        for key in ['sub', 'ins', 'del', 'total']
    }
    errors2 = {
        key: sum(dist[key] for dist in dists2)
        for key in ['sub', 'ins', 'del', 'total']
    }
    total_words = sum(len(ref) for ref, _ in results)
    total_chars = sum(len(ref) for ref, _ in results2)
    # Print Kaldi-like message:
    # %WER 8.20 [ 4459 / 54402, 695 ins, 427 del, 3337 sub ]
    logging.info(
        f'%WER {errors["total"] / total_words:.2%} '
        f'[{errors["total"]} / {total_words}, {errors["ins"]} ins, {errors["del"]} del, {errors["sub"]} sub ]'
    )
    logging.info(
        f'%WER {errors2["total"] / total_chars:.2%} '
        f'[{errors2["total"]} / {total_chars}, {errors2["ins"]} ins, {errors2["del"]} del, {errors2["sub"]} sub ]'
    )
def run(rank, world_size, args):
    '''
    Args:
      rank:
        It is a value between 0 and `world_size-1`, which is
        passed automatically by `mp.spawn()` in :func:`main`.
        The node with rank 0 is responsible for saving checkpoint.
      world_size:
        Number of GPUs for DDP training.
      args:
        The return value of get_parser().parse_args()
    '''
    model_type = args.model_type
    start_epoch = args.start_epoch
    num_epochs = args.num_epochs
    accum_grad = args.accum_grad
    den_scale = args.den_scale
    att_rate = args.att_rate
    use_pruned_intersect = args.use_pruned_intersect

    fix_random_seed(42)
    if world_size > 1:
        setup_dist(rank, world_size, args.master_port)

    suffix = ''
    if args.context_window is not None and args.context_window > 0:
        suffix = f'ac{args.context_window}'
    giga_subset = f'giga{args.subset}'
    exp_dir = Path(
        f'exp-{model_type}-mmi-att-sa-vgg-normlayer-{giga_subset}-{suffix}')

    setup_logger(f'{exp_dir}/log/log-train-{rank}')
    if args.tensorboard and rank == 0:
        tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')
    else:
        tb_writer = None

    logging.info("Loading lexicon and symbol tables")
    lang_dir = Path('data/lang_nosp')
    lexicon = Lexicon(lang_dir)

    device_id = rank
    device = torch.device('cuda', device_id)

    if not Path(lang_dir / f'P_{args.subset}.pt').is_file():
        logging.debug(f'Loading P from {lang_dir}/P_{args.subset}.fst.txt')
        with open(lang_dir / f'P_{args.subset}.fst.txt') as f:
            # P is not an acceptor because there is
            # a back-off state, whose incoming arcs
            # have label #0 and aux_label eps.
            P = k2.Fsa.from_openfst(f.read(), acceptor=False)

        phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)

        # P.aux_labels is not needed in later computations, so
        # remove it here.
        del P.aux_labels
        # CAUTION(fangjun): The following line is crucial.
        # Arcs entering the back-off state have label equal to #0.
        # We have to change it to 0 here.
        P.labels[P.labels >= first_phone_disambig_id] = 0

        P = k2.remove_epsilon(P)
        P = k2.arc_sort(P)
        torch.save(P.as_dict(), lang_dir / f'P_{args.subset}.pt')
    else:
        logging.debug('Loading pre-compiled P')
        d = torch.load(lang_dir / f'P_{args.subset}.pt')
        P = k2.Fsa.from_dict(d)

    graph_compiler = MmiTrainingGraphCompiler(
        lexicon=lexicon,
        P=P,
        device=device,
    )
    phone_ids = lexicon.phone_symbols()

    gigaspeech = GigaSpeechAsrDataModule(args)
    train_dl = gigaspeech.train_dataloaders()
    valid_dl = gigaspeech.valid_dataloaders()

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    if use_pruned_intersect:
        logging.info('Use pruned intersect for den_lats')
    else:
        logging.info("Don't use pruned intersect for den_lats")

    logging.info("About to create model")

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True,
            is_espnet_structure=True)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    if args.torchscript:
        logging.info('Applying TorchScript to model...')
        model = torch.jit.script(model)

    model.to(device)
    describe(model)

    if world_size > 1:
        model = DDP(model, device_ids=[rank])

    # Now for the alignment model, if any
    if args.use_ali_model:
        ali_model = TdnnLstm1b(
            num_features=80,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4)

        ali_model_fname = Path(
            f'exp-lstm-adam-ctc-musan/epoch-{args.ali_model_epoch}.pt')
        assert ali_model_fname.is_file(), \
                f'ali model filename {ali_model_fname} does not exist!'
        ali_model.load_state_dict(
            torch.load(ali_model_fname, map_location='cpu')['state_dict'])
        ali_model.to(device)

        ali_model.eval()
        ali_model.requires_grad_(False)
        logging.info(f'Use ali_model: {ali_model_fname}')
    else:
        ali_model = None
        logging.info('No ali_model')

    optimizer = Noam(model.parameters(),
                     model_size=args.attention_dim,
                     factor=args.lr_factor,
                     warm_step=args.warm_step,
                     weight_decay=args.weight_decay)

    scaler = GradScaler(enabled=args.amp)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer,
                               scaler=scaler)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    for epoch in range(start_epoch, num_epochs):
        train_dl.sampler.set_epoch(epoch)
        curr_learning_rate = optimizer._rate
        if tb_writer is not None:
            tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                                 global_batch_idx_train)
            tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            ali_model=ali_model,
            device=device,
            graph_compiler=graph_compiler,
            use_pruned_intersect=use_pruned_intersect,
            optimizer=optimizer,
            accum_grad=accum_grad,
            den_scale=den_scale,
            att_rate=att_rate,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
            world_size=world_size,
            scaler=scaler)
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            optimizer=None,
                            scheduler=None,
                            scaler=None,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train,
                            local_rank=rank,
                            torchscript=args.torchscript_epoch != -1
                            and epoch >= args.torchscript_epoch)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch,
                               local_rank=rank)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        optimizer=optimizer,
                        scheduler=None,
                        scaler=scaler,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train,
                        local_rank=rank,
                        torchscript=args.torchscript_epoch != -1
                        and epoch >= args.torchscript_epoch)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch,
                           local_rank=rank)

    logging.warning('Done')
    if world_size > 1:
        torch.distributed.barrier()
        cleanup_dist()
def main():
    parser = get_parser()
    GigaSpeechAsrDataModule.add_arguments(parser)
    args = parser.parse_args()

    model_type = args.model_type
    epoch = args.epoch
    avg = args.avg
    att_rate = args.att_rate
    num_paths = args.num_paths
    use_lm_rescoring = args.use_lm_rescoring
    use_whole_lattice = False
    if use_lm_rescoring and num_paths < 1:
        # It doesn't make sense to use n-best list for rescoring
        # when n is less than 1
        use_whole_lattice = True

    output_beam_size = args.output_beam_size

    suffix = ''
    if args.context_window is not None and args.context_window > 0:
        suffix = f'ac{args.context_window}'
    giga_subset = f'giga{args.subset}'
    exp_dir = Path(
        f'exp-{model_type}-mmi-att-sa-vgg-normlayer-{giga_subset}-{suffix}')

    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    logging.info(f'output_beam_size: {output_beam_size}')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')

    phone_ids = get_phone_symbols(phone_symbol_table)

    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=args.vgg_fronted)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=args.vgg_frontend,
            is_espnet_structure=args.is_espnet_structure)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    if avg == 1:
        checkpoint = os.path.join(exp_dir, 'epoch-' + str(epoch - 1) + '.pt')
        load_checkpoint(checkpoint, model)
    else:
        checkpoints = [
            os.path.join(exp_dir, 'epoch-' + str(avg_epoch) + '.pt')
            for avg_epoch in range(epoch - avg, epoch)
        ]
        average_checkpoint(checkpoints, model)

    if args.torchscript:
        logging.info('Applying TorchScript to model...')
        model = torch.jit.script(model)
        ts_path = exp_dir / f'model_ts_epoch{epoch}_avg{avg}.pt'
        logging.info(f'Storing the TorchScripted model in {ts_path}')
        model.save(ts_path)

    model.to(device)
    model.eval()

    if not os.path.exists(lang_dir / 'HLG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        HLG = compile_HLG(L=L,
                          G=G,
                          H=ctc_topo,
                          labels_disambig_id_start=first_phone_disambig_id,
                          aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(HLG.as_dict(), lang_dir / 'HLG.pt')
    else:
        logging.debug("Loading pre-compiled HLG")
        d = torch.load(lang_dir / 'HLG.pt')
        HLG = k2.Fsa.from_dict(d)

    if use_lm_rescoring:
        if use_whole_lattice:
            logging.info('Rescoring with the whole lattice')
        else:
            logging.info(f'Rescoring with n-best list, n is {num_paths}')
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        if not os.path.exists(lang_dir / 'G_4_gram.pt'):
            logging.debug('Loading G_4_gram.fst.txt')
            with open(lang_dir / 'G_4_gram.fst.txt') as f:
                G = k2.Fsa.from_openfst(f.read(), acceptor=False)
                # G.aux_labels is not needed in later computations, so
                # remove it here.
                del G.aux_labels
                # CAUTION(fangjun): The following line is crucial.
                # Arcs entering the back-off state have label equal to #0.
                # We have to change it to 0 here.
                G.labels[G.labels >= first_word_disambig_id] = 0
                G = k2.create_fsa_vec([G]).to(device)
                G = k2.arc_sort(G)
                torch.save(G.as_dict(), lang_dir / 'G_4_gram.pt')
        else:
            logging.debug('Loading pre-compiled G_4_gram.pt')
            d = torch.load(lang_dir / 'G_4_gram.pt')
            G = k2.Fsa.from_dict(d).to(device)

        if use_whole_lattice:
            # Add epsilon self-loops to G as we will compose
            # it with the whole lattice later
            G = k2.add_epsilon_self_loops(G)
            G = k2.arc_sort(G)
            G = G.to(device)
        # G.lm_scores is used to replace HLG.lm_scores during
        # LM rescoring.
        G.lm_scores = G.scores.clone()
    else:
        logging.debug('Decoding without LM rescoring')
        G = None
        if num_paths > 1:
            logging.debug(f'Use n-best list decoding, n is {num_paths}')
        else:
            logging.debug('Use 1-best decoding')

    logging.debug("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)

    if not hasattr(HLG, 'lm_scores'):
        HLG.lm_scores = HLG.scores.clone()

    # load dataset
    gigaspeech = GigaSpeechAsrDataModule(args)
    test_sets = ['DEV', 'TEST']
    for test_set, test_dl in zip(
            test_sets,
        [gigaspeech.valid_dataloaders(),
         gigaspeech.test_dataloaders()]):
        logging.info(f'* DECODING: {test_set}')

        test_set_wers = dict()
        results_dict = decode(dataloader=test_dl,
                              model=model,
                              HLG=HLG,
                              symbols=symbol_table,
                              num_paths=num_paths,
                              G=G,
                              use_whole_lattice=use_whole_lattice,
                              output_beam_size=output_beam_size)

        for key, results in results_dict.items():
            recog_path = exp_dir / f'recogs-{test_set}-{key}.txt'
            store_transcripts(path=recog_path, texts=results)
            logging.info(f'The transcripts are stored in {recog_path}')

            ref_path = exp_dir / f'ref-{test_set}.trn'
            hyp_path = exp_dir / f'hyp-{test_set}.trn'
            store_transcripts_for_sclite(ref_path=ref_path,
                                         hyp_path=hyp_path,
                                         texts=results)
            logging.info(
                f'The sclite-format transcripts are stored in {ref_path} and {hyp_path}'
            )
            cmd = f'python3 GigaSpeech/utils/gigaspeech_scoring.py {ref_path} {hyp_path} {exp_dir / "tmp_sclite"}'
            logging.info(cmd)
            try:
                subprocess.run(cmd, check=True, shell=True)
            except subprocess.CalledProcessError:
                logging.error(
                    'Skipping sclite scoring as it failed to run: Is "sclite" registered in your $PATH?"'
                )

            # The following prints out WERs, per-word error statistics and aligned
            # ref/hyp pairs.
            errs_filename = exp_dir / f'errs-{test_set}-{key}.txt'
            with open(errs_filename, 'w') as f:
                wer = write_error_stats(f, f'{test_set}-{key}', results)
                test_set_wers[key] = wer

            logging.info(
                'Wrote detailed error stats to {}'.format(errs_filename))

        test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
        errs_info = exp_dir / f'wer-summary-{test_set}.txt'
        with open(errs_info, 'w') as f:
            print('settings\tWER', file=f)
            for key, val in test_set_wers:
                print('{}\t{}'.format(key, val), file=f)

        s = '\nFor {}, WER of different settings are:\n'.format(test_set)
        note = '\tbest for {}'.format(test_set)
        for key, val in test_set_wers:
            s += '{}\t{}{}\n'.format(key, val, note)
            note = ''
        logging.info(s)
示例#9
0
def main():
    args = get_parser().parse_args()

    model_type = args.model_type
    epoch = args.epoch
    max_duration = args.max_duration
    avg = args.avg
    att_rate = args.att_rate

    exp_dir = Path('exp-' + model_type + '-noam-ctc-att-musan-sa')
    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')

    phone_ids = get_phone_symbols(phone_symbol_table)
    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers)
    else:
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers)

    if avg == 1:
        checkpoint = os.path.join(exp_dir, 'epoch-' + str(epoch - 1) + '.pt')
        load_checkpoint(checkpoint, model)
    else:
        checkpoints = [
            os.path.join(exp_dir, 'epoch-' + str(avg_epoch) + '.pt')
            for avg_epoch in range(epoch - avg, epoch)
        ]
        average_checkpoint(checkpoints, model)

    model.to(device)
    model.eval()

    if not os.path.exists(lang_dir / 'HLG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        HLG = compile_HLG(L=L,
                          G=G,
                          H=ctc_topo,
                          labels_disambig_id_start=first_phone_disambig_id,
                          aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(HLG.as_dict(), lang_dir / 'HLG.pt')
    else:
        logging.debug("Loading pre-compiled HLG")
        d = torch.load(lang_dir / 'HLG.pt')
        HLG = k2.Fsa.from_dict(d)

    logging.debug("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)

    # load dataset
    feature_dir = Path('exp/data')
    test_sets = ['test-clean', 'test-other']
    for test_set in test_sets:
        logging.info(f'* DECODING: {test_set}')

        logging.debug("About to get test cuts")
        cuts_test = load_manifest(feature_dir / f'cuts_{test_set}.json.gz')
        logging.debug("About to create test dataset")
        from lhotse.dataset.input_strategies import OnTheFlyFeatures
        from lhotse import Fbank, FbankConfig
        test = K2SpeechRecognitionDataset(
            cuts_test,
            input_strategy=OnTheFlyFeatures(Fbank(
                FbankConfig(num_mel_bins=80))))
        sampler = SingleCutSampler(cuts_test, max_duration=max_duration)
        logging.debug("About to create test dataloader")
        test_dl = torch.utils.data.DataLoader(test,
                                              batch_size=None,
                                              sampler=sampler,
                                              num_workers=1)

        logging.debug("About to decode")
        results = decode(dataloader=test_dl,
                         model=model,
                         device=device,
                         HLG=HLG,
                         symbols=symbol_table)

        recog_path = exp_dir / f'recogs-{test_set}.txt'
        store_transcripts(path=recog_path, texts=results)
        logging.info(f'The transcripts are stored in {recog_path}')
        # compute WER
        dists = [edit_distance(r, h) for r, h in results]
        errors = {
            key: sum(dist[key] for dist in dists)
            for key in ['sub', 'ins', 'del', 'total']
        }
        total_words = sum(len(ref) for ref, _ in results)
        # Print Kaldi-like message:
        # %WER 8.20 [ 4459 / 54402, 695 ins, 427 del, 3337 sub ]
        logging.info(
            f'[{test_set}] %WER {errors["total"] / total_words:.2%} '
            f'[{errors["total"]} / {total_words}, {errors["ins"]} ins, {errors["del"]} del, {errors["sub"]} sub ]'
        )
示例#10
0
def main():
    parser = get_parser()
    args = parser.parse_args()

    model_type = args.model_type
    epoch = args.epoch
    avg = args.avg
    att_rate = args.att_rate
    num_paths = args.num_paths
    use_lm_rescoring = args.use_lm_rescoring
    use_whole_lattice = False
    if use_lm_rescoring and num_paths < 1:
        # It doesn't make sense to use n-best list for rescoring
        # when n is less than 1
        use_whole_lattice = True

    output_beam_size = args.output_beam_size

    exp_dir = Path('exp-' + model_type + '-mmi-att-sa-vgg-normlayer')
    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    logging.info(f'output_beam_size: {output_beam_size}')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')

    phone_ids = get_phone_symbols(phone_symbol_table)

    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=40,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=args.vgg_fronted)
    elif model_type == "conformer":
        model = Conformer(
            num_features=40,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=args.vgg_frontend,
            is_espnet_structure=args.is_espnet_structure)
    elif model_type == "contextnet":
        model = ContextNet(num_features=40, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    if avg == 1:
        checkpoint = os.path.join(exp_dir, 'epoch-' + str(epoch - 1) + '.pt')
        load_checkpoint(checkpoint, model)
    else:
        checkpoints = [
            os.path.join(exp_dir, 'epoch-' + str(avg_epoch) + '.pt')
            for avg_epoch in range(epoch - avg, epoch)
        ]
        average_checkpoint(checkpoints, model)

    model.to(device)
    model.eval()

    if not os.path.exists(lang_dir / 'HLG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        HLG = compile_HLG(L=L,
                          G=G,
                          H=ctc_topo,
                          labels_disambig_id_start=first_phone_disambig_id,
                          aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(HLG.as_dict(), lang_dir / 'HLG.pt')
    else:
        logging.debug("Loading pre-compiled HLG")
        d = torch.load(lang_dir / 'HLG.pt')
        HLG = k2.Fsa.from_dict(d)

    logging.debug('Decoding without LM rescoring')
    G = None
    if num_paths > 1:
        logging.debug(f'Use n-best list decoding, n is {num_paths}')
    else:
        logging.debug('Use 1-best decoding')

    logging.debug("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)

    if not hasattr(HLG, 'lm_scores'):
        HLG.lm_scores = HLG.scores.clone()

    # load dataset
    feature_dir = Path('exp/data')
    logging.info("About to get test cuts")
    cuts_test = CutSet.from_json(feature_dir / 'cuts_test.json.gz')
    logging.info("About to create test dataset")
    test = K2SpeechRecognitionDataset(cuts_test)
    test_sampler = SingleCutSampler(cuts_test, max_frames=12000)
    logging.info("About to create test dataloader")
    test_dl = torch.utils.data.DataLoader(test,
                                          sampler=test_sampler,
                                          batch_size=None,
                                          num_workers=1)

    logging.info("About to decode")

    results = decode(dataloader=test_dl,
                     model=model,
                     HLG=HLG,
                     symbols=symbol_table,
                     num_paths=num_paths,
                     G=G,
                     use_whole_lattice=use_whole_lattice,
                     output_beam_size=output_beam_size)

    s = ''
    results2 = []
    for ref, hyp in results:
        s += f'ref={ref}\n'
        s += f'hyp={hyp}\n'
        results2.append((list(''.join(ref)), list(''.join(hyp))))
    logging.info(s)
    # compute WER
    dists = [edit_distance(r, h) for r, h in results]
    dists2 = [edit_distance(r, h) for r, h in results2]
    errors = {
        key: sum(dist[key] for dist in dists)
        for key in ['sub', 'ins', 'del', 'total']
    }
    errors2 = {
        key: sum(dist[key] for dist in dists2)
        for key in ['sub', 'ins', 'del', 'total']
    }
    total_words = sum(len(ref) for ref, _ in results)
    total_chars = sum(len(ref) for ref, _ in results2)
    # Print Kaldi-like message:
    # %WER 8.20 [ 4459 / 54402, 695 ins, 427 del, 3337 sub ]
    logging.info(
        f'%WER {errors["total"] / total_words:.2%} '
        f'[{errors["total"]} / {total_words}, {errors["ins"]} ins, {errors["del"]} del, {errors["sub"]} sub ]'
    )
    logging.info(
        f'%CER {errors2["total"] / total_chars:.2%} '
        f'[{errors2["total"]} / {total_chars}, {errors2["ins"]} ins, {errors2["del"]} del, {errors2["sub"]} sub ]'
    )
示例#11
0
def main():
    parser = get_parser()
    LibriSpeechAsrDataModule.add_arguments(parser)
    logging.basicConfig(level=logging.DEBUG)
    args = parser.parse_args()
    avg = args.avg
    attention_dim = args.attention_dim
    nhead = args.nhead
    att_rate = args.att_rate
    model_type = args.model_type
    epoch = args.epoch

    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')

    lang_dir = Path('data/en_token_list/bpe_unigram5000/')
    bpe_model_path = lang_dir / 'bpe.model'
    tokens_file = lang_dir / 'tokens.txt'
    numericalizer = Numericalizer.build_numericalizer(bpe_model_path,
                                                      tokens_file)

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    num_classes = len(numericalizer.tokens_list)
    if model_type == "conformer":
        model = Conformer(num_features=80,
                          nhead=args.nhead,
                          d_model=args.attention_dim,
                          num_classes=num_classes,
                          subsampling_factor=4,
                          num_decoder_layers=num_decoder_layers,
                          vgg_frontend=args.vgg_frontend,
                          is_espnet_structure=args.is_espnet_structure,
                          mmi_loss=False)

        if args.espnet_identical_model:
            assert sum([p.numel() for p in model.parameters()]) == 116146960
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not verified")

    exp_dir = Path(f'exp-bpe-{model_type}-{attention_dim}-{nhead}-noam/')
    if args.decode_with_released_model is True:
        released_model_path = exp_dir / f'model-epoch-{epoch}-avg-{avg}.pt'
        model.load_state_dict(torch.load(released_model_path))
    else:
        if avg == 1:
            checkpoint = os.path.join(exp_dir,
                                      'epoch-' + str(epoch - 1) + '.pt')
            load_checkpoint(checkpoint, model)
        else:
            checkpoints = [
                os.path.join(exp_dir, 'epoch-' + str(avg_epoch) + '.pt')
                for avg_epoch in range(epoch - avg, epoch)
            ]
            average_checkpoint(checkpoints, model)
        if args.generate_release_model:
            released_model_path = exp_dir / f'model-epoch-{epoch}-avg-{avg}.pt'
            torch.save(model.state_dict(), released_model_path)

    model.to(device)
    model.eval()
    token_ids_with_blank = [i for i in range(num_classes)]

    ctc_path = lang_dir / 'ctc_topo.pt'

    if not os.path.exists(ctc_path):
        logging.info("Generating ctc topo...")
        ctc_topo = k2.arc_sort(build_ctc_topo(token_ids_with_blank))
        torch.save(ctc_topo.as_dict(), ctc_path)

    else:
        logging.info("Loading pre-compiled ctc topo fst")
        d_ctc_topo = torch.load(ctc_path)
        ctc_topo = k2.Fsa.from_dict(d_ctc_topo)
    ctc_topo = ctc_topo.to(device)

    feature_dir = Path('exp/data')

    librispeech = LibriSpeechAsrDataModule(args)
    test_sets = ['test-clean', 'test-other']
    for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
        results = decode(dataloader=test_dl,
                         model=model,
                         device=device,
                         ctc_topo=ctc_topo,
                         numericalizer=numericalizer,
                         num_paths=args.num_paths,
                         output_beam_size=args.output_beam_size)

        recog_path = exp_dir / f'recogs-{test_set}.txt'
        store_transcripts(path=recog_path, texts=results)
        logging.info(f'The transcripts are stored in {recog_path}')

        # The following prints out WERs, per-word error statistics and aligned
        # ref/hyp pairs.
        errs_filename = exp_dir / f'errs-{test_set}.txt'
        with open(errs_filename, 'w') as f:
            write_error_stats(f, test_set, results)
        logging.info('Wrote detailed error stats to {}'.format(errs_filename))
示例#12
0
def run(rank, world_size, args):
    '''
    Args:
      rank:
        It is a value between 0 and `world_size-1`, which is
        passed automatically by `mp.spawn()` in :func:`main`.
        The node with rank 0 is responsible for saving checkpoint.
      world_size:
        Number of GPUs for DDP training.
      args:
        The return value of get_parser().parse_args()
    '''
    model_type = args.model_type
    start_epoch = args.start_epoch
    num_epochs = args.num_epochs
    accum_grad = args.accum_grad
    den_scale = args.den_scale
    att_rate = args.att_rate

    fix_random_seed(42)
    setup_dist(rank, world_size, args.master_port)

    exp_dir = Path('exp-' + model_type + '-noam-mmi-att-musan-sa')
    setup_logger(f'{exp_dir}/log/log-train-{rank}')
    if args.tensorboard and rank == 0:
        tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')
    else:
        tb_writer = None
    #  tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard') if args.tensorboard and rank == 0 else None

    logging.info("Loading lexicon and symbol tables")
    lang_dir = Path('data/lang_nosp')
    lexicon = Lexicon(lang_dir)

    device_id = rank
    device = torch.device('cuda', device_id)

    graph_compiler = MmiTrainingGraphCompiler(
        lexicon=lexicon,
        device=device,
    )
    phone_ids = lexicon.phone_symbols()
    P = create_bigram_phone_lm(phone_ids)
    P.scores = torch.zeros_like(P.scores)
    P = P.to(device)

    librispeech = LibriSpeechAsrDataModule(args)
    train_dl = librispeech.train_dataloaders()
    valid_dl = librispeech.valid_dataloaders()

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    logging.info("About to create model")

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers)
    else:
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers)

    model.P_scores = nn.Parameter(P.scores.clone(), requires_grad=True)

    model.to(device)
    describe(model)

    model = DDP(model, device_ids=[rank])

    optimizer = Noam(model.parameters(),
                     model_size=args.attention_dim,
                     factor=1.0,
                     warm_step=args.warm_step)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    for epoch in range(start_epoch, num_epochs):
        train_dl.sampler.set_epoch(epoch)
        curr_learning_rate = optimizer._rate
        if tb_writer is not None:
            tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                                 global_batch_idx_train)
            tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            P=P,
            device=device,
            graph_compiler=graph_compiler,
            optimizer=optimizer,
            accum_grad=accum_grad,
            den_scale=den_scale,
            att_rate=att_rate,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
            world_size=world_size,
        )
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            optimizer=None,
                            scheduler=None,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train,
                            local_rank=rank)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch,
                               local_rank=rank)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        optimizer=optimizer,
                        scheduler=None,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train,
                        local_rank=rank)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch,
                           local_rank=rank)

    logging.warning('Done')
    torch.distributed.barrier()
    # NOTE: The training process is very likely to hang at this point.
    # If you press ctrl + c, your GPU memory will not be freed.
    # To free you GPU memory, you can run:
    #
    #  $ ps aux | grep multi
    #
    # And it will print something like below:
    #
    # kuangfa+  430518 98.9  0.6 57074236 3425732 pts/21 Rl Apr02 639:01 /root/fangjun/py38/bin/python3 -c from multiprocessing.spawn
    #
    # You can kill the process manually by:
    #
    # $ kill -9 430518
    #
    # And you will see that your GPU is now not occupied anymore.
    cleanup_dist()