class PruningIllustration(object): def __init__(self): if os.path.dirname(__file__): os.chdir(os.path.dirname(__file__)) self.network_path = "pruning_illustration_network" self.config_file = os.path.join(self.network_path, "network-config.json") self.position_file = os.path.join(self.network_path, "network-neuron-positions.hdf5") self.save_file = os.path.join(self.network_path, "voxels", "network-synapses.hdf5") create_cube_mesh(file_name=os.path.join(self.network_path, "mesh", "simple_mesh.obj"), centre_point=(0, 0, 0), side_len=500e-6) sp = SnuddaPlace(config_file=self.config_file, d_view=None) print("Calling read_config") sp.parse_config() print("Read done") sp.write_data(self.position_file) # We want to load in the ball and stick neuron that has 20 micrometer soma diameter, and axon (along y-axis), # and dendrite along (x-axis) out to 200 micrometer distance from centre of soma. self.sd = SnuddaDetect(config_file=self.config_file, position_file=self.position_file, save_file=self.save_file, rc=None, hyper_voxel_size=150) # Reposition the neurons so we know how many synapses and where they will be located before pruning neuron_positions = np.array([[0, 59, 0], # Postsynaptiska [0, 89, 0], [0, 119, 0], [0, 149, 0], [0, 179, 0], [0, 209, 0], [0, 239, 0], [0, 269, 0], [0, 299, 0], [0, 329, 0], [59, 0, 0], # Presynaptiska [89, 0, 0], [119, 0, 0], [149, 0, 0], [179, 0, 0], [209, 0, 0], [239, 0, 0], [269, 0, 0], [299, 0, 0], [329, 0, 0], ]) * 1e-6 # TODO: Add potential for gap junctions also by having 5 + 5 neurons in other grid for idx, pos in enumerate(neuron_positions): self.sd.neurons[idx]["position"] = pos ang = -np.pi / 2 R_x = np.array([[1, 0, 0], [0, np.cos(ang), -np.sin(ang)], [0, np.sin(ang), np.cos(ang)]]) ang = np.pi / 2 R_y = np.array([[np.cos(ang), 0, np.sin(ang)], [0, 1, 0], [-np.sin(ang), 0, np.cos(ang)]]) for idx in range(0, 10): # Post synaptic neurons self.sd.neurons[idx]["rotation"] = R_x for idx in range(10, 20): # Presynaptic neurons self.sd.neurons[idx]["rotation"] = R_y self.sd.detect(restart_detection_flag=True) # Also update so that the new positions are saved in the place file rn = RepositionNeurons(self.position_file) for neuron_info in self.sd.neurons: rn.place(neuron_info["neuronID"], position=neuron_info["position"], rotation=neuron_info["rotation"], verbose=False) rn.close() if False: self.sd.process_hyper_voxel(1) plt, ax = self.sd.plot_hyper_voxel(plot_neurons=True, elev_azim=(90, 0), draw_axon_voxels=False, draw_dendrite_voxels=False, draw_axons=True, draw_dendrites=True, show_axis=False, title="No pruning", fig_file_name="Pruning-fig-1-no-pruning") import pdb pdb.set_trace() def prune_network(self, pruning_config=None, fig_name=None, title=None): work_log = os.path.join(self.network_path, "log", "network-detect-worklog.hdf5") pruned_output = os.path.join(self.network_path, "network-synapses.hdf5") if pruning_config is not None and not os.path.exists(pruning_config): pruning_config = os.path.join(self.network_path, pruning_config) sp = SnuddaPrune(network_path=self.network_path, config_file=pruning_config) # Use default config file sp.prune(pre_merge_only=False) sp = [] plot_axon = True plot_dendrite = True #plot_axon = np.ones((20,), dtype=bool) #plot_dendrite = np.ones((20,), dtype=bool) #plot_axon[:10] = False #plot_dendrite[10:] = False pn = PlotNetwork(pruned_output) plt, ax = pn.plot(fig_name=fig_name, show_axis=False, plot_axon=plot_axon, plot_dendrite=plot_dendrite, title=title, title_pad=-14, elev_azim=(90, 0))
class TouchDetectionHypervoxelIllustration(object): def __init__(self): if os.path.dirname(__file__): os.chdir(os.path.dirname(__file__)) self.network_path = "touch_detection_hypervoxel_illustration_network" self.config_file = os.path.join(self.network_path, "network-config.json") self.position_file = os.path.join(self.network_path, "network-neuron-positions.hdf5") self.save_file = os.path.join(self.network_path, "voxels", "network-putative-synapses.hdf5") create_cube_mesh(file_name=os.path.join(self.network_path, "mesh", "simple_mesh.obj"), centre_point=(0, 0, 0), side_len=500e-6) sp = SnuddaPlace(config_file=self.config_file, d_view=None) sp.parse_config() sp.write_data(self.position_file) self.sd = SnuddaDetect(config_file=self.config_file, position_file=self.position_file, save_file=self.save_file, rc=None, hyper_voxel_size=60) neuron_positions = np.array([[10, 30, 70], # Postsynaptiska [50, 60, 70], # Presynaptiska ]) * 1e-6 for idx, pos in enumerate(neuron_positions): self.sd.neurons[idx]["position"] = pos ang = -np.pi / 2 R_x = np.array([[1, 0, 0], [0, np.cos(ang), -np.sin(ang)], [0, np.sin(ang), np.cos(ang)]]) ang = np.pi * 0.2 R_y = np.array([[np.cos(ang), 0, np.sin(ang)], [0, 1, 0], [-np.sin(ang), 0, np.cos(ang)]]) ang = np.pi * (0.5 + 0.2) R_z0 = np.array([[np.cos(ang), -np.sin(ang), 0], [np.sin(ang), np.cos(ang), 0], [0, 0, 1]]) ang = np.pi*0.4 R_z1 = np.array([[np.cos(ang), -np.sin(ang), 0], [np.sin(ang), np.cos(ang), 0], [0, 0, 1]]) # Post synaptic self.sd.neurons[0]["rotation"] = R_z0 # Presynaptic neuron self.sd.neurons[1]["rotation"] = np.matmul(R_z1, R_y) self.sd.detect(restart_detection_flag=True) self.sd.process_hyper_voxel(0) plt, ax = self.sd.plot_hyper_voxel(plot_neurons=False, draw_axon_voxels=True, draw_dendrite_voxels=True, elev_azim=(50, -22), title="", fig_file_name="touch_detection_illustration-voxels.pdf", dpi=300) plt, ax = self.sd.plot_hyper_voxel(plot_neurons=True, draw_axon_voxels=False, draw_dendrite_voxels=False, elev_azim=(50, -22), title="", fig_file_name="touch_detection_illustration-morph.pdf", dpi=300) print(f"\n--> Figures written to {self.sd.network_path}/figures")
class TestPrune(unittest.TestCase): def setUp(self): if os.path.dirname(__file__): os.chdir(os.path.dirname(__file__)) self.network_path = os.path.join(os.path.dirname(__file__), "networks", "network_testing_prune3") create_cube_mesh(file_name=os.path.join(self.network_path, "mesh", "simple_mesh.obj"), centre_point=(0, 0, 0), side_len=500e-6) config_file = os.path.join(self.network_path, "network-config.json") position_file = os.path.join(self.network_path, "network-neuron-positions.hdf5") save_file = os.path.join(self.network_path, "voxels", "network-putative-synapses.hdf5") sp = SnuddaPlace(config_file=config_file, d_view=None, verbose=True) sp.parse_config() sp.write_data(position_file) # We want to load in the ball and stick neuron that has 20 micrometer soma diameter, and axon (along y-axis), # and dendrite along (x-axis) out to 100 micrometer distance from centre of soma. self.sd = SnuddaDetect(config_file=config_file, position_file=position_file, save_file=save_file, rc=None, hyper_voxel_size=120, verbose=True) # Reposition the neurons so we know how many synapses and where they will be located before pruning neuron_positions = np.array([ [0, 20, 0], # Postsynaptiska [0, 40, 0], [0, 60, 0], [0, 80, 0], [0, 100, 0], [0, 120, 0], [0, 140, 0], [0, 160, 0], [0, 180, 0], [0, 200, 0], [20, 0, 0], # Presynaptiska [40, 0, 0], [60, 0, 0], [80, 0, 0], [100, 0, 0], [120, 0, 0], [140, 0, 0], [160, 0, 0], [180, 0, 0], [200, 0, 0], [70, 0, 500], # For gap junction check [110, 0, 500], [150, 0, 500], [190, 0, 500], [0, 70, 500], [0, 110, 500], [0, 150, 500], [0, 190, 500], ]) * 1e-6 # TODO: Add potential for gap junctions also by having 5 + 5 neurons in other grid for idx, pos in enumerate(neuron_positions): self.sd.neurons[idx]["position"] = pos ang = -np.pi / 2 R_x = np.array([[1, 0, 0], [0, np.cos(ang), -np.sin(ang)], [0, np.sin(ang), np.cos(ang)]]) ang = np.pi / 2 R_y = np.array([[np.cos(ang), 0, np.sin(ang)], [0, 1, 0], [-np.sin(ang), 0, np.cos(ang)]]) for idx in range(0, 10): # Post synaptic neurons self.sd.neurons[idx]["rotation"] = R_x for idx in range(10, 20): # Presynaptic neurons self.sd.neurons[idx]["rotation"] = R_y for idx in range(24, 28): # GJ neurons self.sd.neurons[idx]["rotation"] = R_x ang = np.pi / 2 R_z = np.array([[np.cos(ang), -np.sin(ang), 0], [np.sin(ang), np.cos(ang), 0], [0, 0, 1]]) for idx in range(20, 24): # GJ neurons self.sd.neurons[idx]["rotation"] = np.matmul(R_z, R_x) self.sd.detect(restart_detection_flag=True) if False: self.sd.process_hyper_voxel(1) self.sd.plot_hyper_voxel(plot_neurons=True) def test_prune(self): pruned_output = os.path.join(self.network_path, "network-synapses.hdf5") with self.subTest(stage="No-pruning"): sp = SnuddaPrune(network_path=self.network_path, config_file=None, verbose=True, keep_files=True) # Use default config file sp.prune() sp = [] # Load the pruned data and check it sl = SnuddaLoad(pruned_output) # TODO: Call a plot function to plot entire network with synapses and all self.assertEqual(sl.data["nSynapses"], (20 * 8 + 10 * 2) * 2) # Update, now AMPA+GABA, hence *2 at end # This checks that all synapses are in order # The synapse sort order is destID, sourceID, synapsetype (channel model id). syn = sl.data["synapses"][:sl.data["nSynapses"], :] syn_order = (syn[:, 1] * len(self.sd.neurons) + syn[:, 0] ) * 12 + syn[:, 6] # The 12 is maxChannelModelID self.assertTrue((np.diff(syn_order) >= 0).all()) # Note that channel model id is dynamically allocated, starting from 10 (GJ have ID 3) # Check that correct number of each type self.assertEqual(np.sum(sl.data["synapses"][:, 6] == 10), 20 * 8 + 10 * 2) self.assertEqual(np.sum(sl.data["synapses"][:, 6] == 11), 20 * 8 + 10 * 2) self.assertEqual(sl.data["nGapJunctions"], 4 * 4 * 4) gj = sl.data["gapJunctions"][:sl.data["nGapJunctions"], :2] gj_order = gj[:, 1] * len(self.sd.neurons) + gj[:, 0] self.assertTrue((np.diff(gj_order) >= 0).all()) with self.subTest(stage="load-testing"): sl = SnuddaLoad(pruned_output, verbose=True) # Try and load a neuron n = sl.load_neuron(0) self.assertTrue(type(n) == NeuronMorphology) syn_ctr = 0 for s in sl.synapse_iterator(chunk_size=50): syn_ctr += s.shape[0] self.assertEqual(syn_ctr, sl.data["nSynapses"]) gj_ctr = 0 for gj in sl.gap_junction_iterator(chunk_size=50): gj_ctr += gj.shape[0] self.assertEqual(gj_ctr, sl.data["nGapJunctions"]) syn, syn_coords = sl.find_synapses(pre_id=14) self.assertTrue((syn[:, 0] == 14).all()) self.assertEqual(syn.shape[0], 40) syn, syn_coords = sl.find_synapses(post_id=3) self.assertTrue((syn[:, 1] == 3).all()) self.assertEqual(syn.shape[0], 36) cell_id_perm = sl.get_cell_id_of_type("ballanddoublestick", random_permute=True, num_neurons=28) cell_id = sl.get_cell_id_of_type("ballanddoublestick", random_permute=False) self.assertEqual(len(cell_id_perm), 28) self.assertEqual(len(cell_id), 28) for cid in cell_id_perm: self.assertTrue(cid in cell_id) # It is important merge file has synapses sorted with dest_id, source_id as sort order since during pruning # we assume this to be able to quickly find all synapses on post synaptic cell. # TODO: Also include the ChannelModelID in sorting check with self.subTest("Checking-merge-file-sorted"): for mf in [ "temp/synapses-for-neurons-0-to-28-MERGE-ME.hdf5", "temp/gapJunctions-for-neurons-0-to-28-MERGE-ME.hdf5", "network-synapses.hdf5" ]: merge_file = os.path.join(self.network_path, mf) sl = SnuddaLoad(merge_file, verbose=True) if "synapses" in sl.data: syn = sl.data["synapses"][:sl.data["nSynapses"], :2] syn_order = syn[:, 1] * len(self.sd.neurons) + syn[:, 0] self.assertTrue((np.diff(syn_order) >= 0).all()) if "gapJunctions" in sl.data: gj = sl.data["gapJunctions"][:sl.data["nGapJunctions"], :2] gj_order = gj[:, 1] * len(self.sd.neurons) + gj[:, 0] self.assertTrue((np.diff(gj_order) >= 0).all()) with self.subTest("synapse-f1"): # Test of f1 testing_config_file = os.path.join(self.network_path, "network-config-test-1.json") sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output, verbose=True) # Setting f1=0.5 in config should remove 50% of GABA synapses, but does so randomly, for AMPA we used f1=0.9 gaba_id = sl.data["connectivityDistributions"][ "ballanddoublestick", "ballanddoublestick"]["GABA"]["channelModelID"] ampa_id = sl.data["connectivityDistributions"][ "ballanddoublestick", "ballanddoublestick"]["AMPA"]["channelModelID"] n_gaba = np.sum(sl.data["synapses"][:, 6] == gaba_id) n_ampa = np.sum(sl.data["synapses"][:, 6] == ampa_id) self.assertTrue((20 * 8 + 10 * 2) * 0.5 - 10 < n_gaba < (20 * 8 + 10 * 2) * 0.5 + 10) self.assertTrue((20 * 8 + 10 * 2) * 0.9 - 10 < n_ampa < (20 * 8 + 10 * 2) * 0.9 + 10) with self.subTest("synapse-softmax"): # Test of softmax testing_config_file = os.path.join( self.network_path, "network-config-test-2.json" ) # Only GABA synapses in this config sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output) # Softmax reduces number of synapses self.assertTrue(sl.data["nSynapses"] < 20 * 8 + 10 * 2) with self.subTest("synapse-mu2"): # Test of mu2 testing_config_file = os.path.join(self.network_path, "network-config-test-3.json") sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output) # With mu2 having 2 synapses means 50% chance to keep them, having 1 will be likely to have it removed self.assertTrue( 20 * 8 * 0.5 - 10 < sl.data["nSynapses"] < 20 * 8 * 0.5 + 10) with self.subTest("synapse-a3"): # Test of a3 testing_config_file = os.path.join(self.network_path, "network-config-test-4.json") sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output) # a3=0.6 means 40% chance to remove all synapses between a pair self.assertTrue( (20 * 8 + 10 * 2) * 0.6 - 14 < sl.data["nSynapses"] < (20 * 8 + 10 * 2) * 0.6 + 14) with self.subTest("synapse-distance-dependent-pruning"): # Testing distance dependent pruning testing_config_file = os.path.join(self.network_path, "network-config-test-5.json") sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output) # "1*(d >= 100e-6)" means we remove all synapses closer than 100 micrometers self.assertEqual(sl.data["nSynapses"], 20 * 6) self.assertTrue( (sl.data["synapses"][:, 8] >= 100).all()) # Column 8 -- distance to soma in micrometers # TODO: Need to do same test for Gap Junctions also -- but should be same results, since same codebase with self.subTest("gap-junction-f1"): # Test of f1 testing_config_file = os.path.join(self.network_path, "network-config-test-6.json") sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output) # Setting f1=0.7 in config should remove 30% of gap junctions, but does so randomly self.assertTrue( 64 * 0.7 - 10 < sl.data["nGapJunctions"] < 64 * 0.7 + 10) with self.subTest("gap-junction-softmax"): # Test of softmax testing_config_file = os.path.join(self.network_path, "network-config-test-7.json") sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output) # Softmax reduces number of synapses self.assertTrue(sl.data["nGapJunctions"] < 16 * 2 + 10) with self.subTest("gap-junction-mu2"): # Test of mu2 testing_config_file = os.path.join(self.network_path, "network-config-test-8.json") sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output) # With mu2 having 4 synapses means 50% chance to keep them, having 1 will be likely to have it removed self.assertTrue( 64 * 0.5 - 10 < sl.data["nGapJunctions"] < 64 * 0.5 + 10) with self.subTest("gap-junction-a3"): # Test of a3 testing_config_file = os.path.join(self.network_path, "network-config-test-9.json") sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output, verbose=True) # a3=0.7 means 30% chance to remove all synapses between a pair self.assertTrue( 64 * 0.7 - 10 < sl.data["nGapJunctions"] < 64 * 0.7 + 10) if False: # Distance dependent pruning currently not implemented for gap junctions with self.subTest("gap-junction-distance-dependent-pruning"): # Testing distance dependent pruning testing_config_file = os.path.join( self.network_path, "network-config-test-10.json") sp = SnuddaPrune(network_path=self.network_path, config_file=testing_config_file, verbose=True, keep_files=True) # Use default config file sp.prune() # Load the pruned data and check it sl = SnuddaLoad(pruned_output, verbose=True) # "1*(d <= 120e-6)" means we remove all synapses further away than 100 micrometers self.assertEqual(sl.data["nGapJunctions"], 2 * 4 * 4) self.assertTrue( (sl.data["gapJunctions"][:, 8] <= 120).all()) # Column 8 -- distance to soma in micrometers
class PruningIllustration(object): def __init__(self, verbose=False, n_repeats=1000): self.n_repeats = n_repeats if os.path.dirname(__file__): os.chdir(os.path.dirname(__file__)) self.network_path = "pruning_illustration_network" # self.config_file = os.path.join(self.network_path, "network-config.json") # self.save_file = os.path.join(self.network_path, "voxels", "network-synapses.hdf5") create_cube_mesh(file_name=os.path.join(self.network_path, "mesh", "simple_mesh.obj"), centre_point=(0, 0, 0), side_len=500e-6) # Default uses network_config.json sp = SnuddaPlace(network_path=self.network_path, d_view=None, verbose=verbose) print("Calling read_config") sp.parse_config() print("Read done") position_file = os.path.join(self.network_path, "network-neuron-positions.hdf5") sp.write_data(position_file) # We want to load in the ball and stick neuron that has 20 micrometer soma diameter, and axon (along y-axis), # and dendrite along (x-axis) out to 200 micrometer distance from centre of soma. self.sd = SnuddaDetect(network_path=self.network_path, rc=None, hyper_voxel_size=150, verbose=verbose) # Reposition the neurons so we know how many synapses and where they will be located before pruning neuron_positions = np.array([[0, 59, 0], # Postsynaptiska [0, 89, 0], [0, 119, 0], [0, 149, 0], [0, 179, 0], [0, 209, 0], [0, 239, 0], [0, 269, 0], [0, 299, 0], [0, 329, 0], [59, 0, 0], # Presynaptiska [89, 0, 0], [119, 0, 0], [149, 0, 0], [179, 0, 0], [209, 0, 0], [239, 0, 0], [269, 0, 0], [299, 0, 0], [329, 0, 0], ]) * 1e-6 # TODO: Add potential for gap junctions also by having 5 + 5 neurons in other grid for idx, pos in enumerate(neuron_positions): self.sd.neurons[idx]["position"] = pos ang = -np.pi / 2 R_x = np.array([[1, 0, 0], [0, np.cos(ang), -np.sin(ang)], [0, np.sin(ang), np.cos(ang)]]) ang = np.pi / 2 R_y = np.array([[np.cos(ang), 0, np.sin(ang)], [0, 1, 0], [-np.sin(ang), 0, np.cos(ang)]]) for idx in range(0, 10): # Post synaptic neurons self.sd.neurons[idx]["rotation"] = R_x for idx in range(10, 20): # Presynaptic neurons self.sd.neurons[idx]["rotation"] = R_y self.sd.detect(restart_detection_flag=True) # Also update so that the new positions are saved in the place file rn = RepositionNeurons(position_file) for neuron_info in self.sd.neurons: rn.place(neuron_info["neuronID"], position=neuron_info["position"], rotation=neuron_info["rotation"], verbose=False) rn.close() if False: self.sd.process_hyper_voxel(1) plt, ax = self.sd.plot_hyper_voxel(plot_neurons=True, elev_azim=(90, 0), draw_axon_voxels=False, draw_dendrite_voxels=False, draw_axons=True, draw_dendrites=True, show_axis=False, title="No pruning", fig_file_name="Pruning-fig-1-no-pruning") import pdb pdb.set_trace() def prune_network(self, pruning_config=None, fig_name=None, title=None, verbose=False, plot_network=True, random_seed=None, n_repeats=None): if n_repeats is None: n_repeats = self.n_repeats work_log = os.path.join(self.network_path, "log", "network-detect-worklog.hdf5") pruned_output = os.path.join(self.network_path, "network-synapses.hdf5") if pruning_config is not None and not os.path.exists(pruning_config): pruning_config = os.path.join(self.network_path, pruning_config) # We keep temp files sp = SnuddaPrune(network_path=self.network_path, config_file=pruning_config, verbose=verbose, keep_files=True, random_seed=random_seed) # Use default config file sp.prune() n_synapses = sp.out_file["network/synapses"].shape[0] n_gap_junctions = sp.out_file["network/gapJunctions"].shape[0] sp = [] plot_axon = True plot_dendrite = True #plot_axon = np.ones((20,), dtype=bool) #plot_dendrite = np.ones((20,), dtype=bool) #plot_axon[:10] = False #plot_dendrite[10:] = False if plot_network: pn = PlotNetwork(pruned_output) plt, ax = pn.plot(fig_name=fig_name, show_axis=False, plot_axon=plot_axon, plot_dendrite=plot_dendrite, title=title, title_pad=-14, elev_azim=(90, 0)) if n_repeats > 1: n_syn_mean, n_syn_std, _, _ = self.gather_pruning_statistics(pruning_config=pruning_config, n_repeats=n_repeats) plt.figtext(0.5, 0.15, f"(${n_syn_mean:.1f} \pm {n_syn_std:.1f}$)", ha="center", fontsize=16) plt.savefig(fig_name, dpi=300, bbox_inches='tight') # Load the pruned data and check it # sl = SnuddaLoad(pruned_output) return n_synapses, n_gap_junctions def gather_pruning_statistics(self, pruning_config, n_repeats): n_synapses = np.zeros((n_repeats,)) n_gap_junctions = np.zeros((n_repeats,)) ss = np.random.SeedSequence() random_seeds = ss.generate_state(n_repeats) for i, rand_seed in enumerate(random_seeds): n_synapses[i], n_gap_junctions[i] = self.prune_network(pruning_config=pruning_config, plot_network=False, random_seed=rand_seed) mean_syn, std_syn = np.mean(n_synapses), np.std(n_synapses) mean_gj, std_gj = np.mean(n_gap_junctions), np.std(n_gap_junctions) print(f"{pruning_config}\nsynapses : {mean_syn:.1f} +/- {std_syn:.1f}\ngap junctions: {mean_gj:.1f} +/- {std_gj:.1f}") return mean_syn, std_syn, mean_gj, std_gj