def forecast_hr_begin(site_metadata):
    return default_forecast(site_metadata,
                            issue_time_of_day=dt.time(hour=5),
                            lead_time_to_start=pd.Timedelta('1h'),
                            interval_length=pd.Timedelta('1h'),
                            run_length=pd.Timedelta('1h'),
                            interval_label='beginning')
def test_get_data_start_end_labels_obs_longer_than_1h(site_metadata):
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('2h'))
    forecast = default_forecast(site_metadata, run_length=pd.Timedelta('5min'))
    run_time = pd.Timestamp('20190422T1945Z')
    # obs interval cannot be longer than 1 hr
    with pytest.raises(ValueError) as excinfo:
        utils.get_data_start_end(observation, forecast, run_time)
    assert 'observation.interval_length <= 1h' in str(excinfo.value)
示例#3
0
def test_run_persistence_fx_too_short(session, site_metadata, obs_5min_begin):
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=23),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('1min'),
                                run_length=pd.Timedelta('3min'),
                                interval_label='beginning')
    issue_time = pd.Timestamp('20190423T2300Z')
    run_time = pd.Timestamp('20190422T1945Z')
    with pytest.raises(ValueError) as excinfo:
        main.run_persistence(session, obs_5min_begin, forecast, run_time,
                             issue_time)
    assert 'requires observation.interval_length' in str(excinfo.value)
def test_get_data_start_end_labels_subhourly_window_limit(site_metadata):
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='beginning')
    forecast = default_forecast(
        site_metadata,
        run_length=pd.Timedelta('5min'),  # test subhourly limit on window
        interval_label='beginning')
    run_time = pd.Timestamp('20190422T1945Z')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time)
    assert data_start == pd.Timestamp('20190422T1940Z')
    assert data_end == pd.Timestamp('20190422T1945Z')
示例#5
0
def test_get_forecast_start_end_time_instant(site_metadata):
    # instant
    forecast = default_forecast(
        site_metadata,
        issue_time_of_day=dt.time(hour=5),
        lead_time_to_start=pd.Timedelta('1h'),
        interval_length=pd.Timedelta('5min'),
        run_length=pd.Timedelta('1h'),
        interval_label='instant')
    issue_time = pd.Timestamp('20190422T0500')
    fx_start, fx_end = main.get_forecast_start_end(forecast, issue_time)
    assert fx_start == pd.Timestamp('20190422T0600')
    assert fx_end == pd.Timestamp('20190422T065959')
def test_get_data_start_end_labels_obs_avg_fx_instant(site_metadata):
    run_time = pd.Timestamp('20190422T1945Z')
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='ending')
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=5),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('5min'),
                                run_length=pd.Timedelta('1d'),
                                interval_label='instant')
    with pytest.raises(ValueError) as excinfo:
        utils.get_data_start_end(observation, forecast, run_time)
    assert 'made from interval average obs' in str(excinfo.value)
示例#7
0
def test_run_persistence_incompatible_instant_fx(session, site_metadata,
                                                 obs_5min_begin):
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=23),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('1h'),
                                run_length=pd.Timedelta('1h'),
                                interval_label='instantaneous')
    issue_time = pd.Timestamp('20190423T2300Z')
    run_time = pd.Timestamp('20190422T1945Z')
    with pytest.raises(ValueError) as excinfo:
        main.run_persistence(session, obs_5min_begin, forecast, run_time,
                             issue_time)
    assert 'instantaneous forecast' in str(excinfo.value).lower()
def test_get_data_start_end_labels_1h_window_limit(site_metadata):
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='beginning')
    forecast = default_forecast(
        site_metadata,
        run_length=pd.Timedelta('12h'),  # test 1 hr limit on window
        interval_label='beginning')
    # ensure data no later than run time
    run_time = pd.Timestamp('20190422T1945Z')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time)
    assert data_start == pd.Timestamp('20190422T1845Z')
    assert data_end == pd.Timestamp('20190422T1945Z')
def test_get_data_start_end_labels_obs_instant_fx_avg_intraday(site_metadata):
    run_time = pd.Timestamp('20190422T1945Z')
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='instant')
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=5),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('5min'),
                                run_length=pd.Timedelta('15min'),
                                interval_label='ending')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time)
    assert data_start == pd.Timestamp('20190422T193001Z')
    assert data_end == pd.Timestamp('20190422T1945Z')
def test_get_data_start_end_labels_obs_fx_instant_mismatch(site_metadata):
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='instant')
    forecast = default_forecast(
        site_metadata,
        issue_time_of_day=dt.time(hour=5),
        lead_time_to_start=pd.Timedelta('1h'),
        interval_length=pd.Timedelta('1h'),  # interval_length must be equal
        run_length=pd.Timedelta('1d'),
        interval_label='instant')  # if interval_label also instant
    run_time = pd.Timestamp('20190422T1945Z')
    with pytest.raises(ValueError) as excinfo:
        utils.get_data_start_end(observation, forecast, run_time)
    assert 'with identical interval length' in str(excinfo.value)
示例#11
0
def test_run_persistence_interval_not_midnight_to_midnight(
        session, site_metadata, obs_5min_begin):
    # not midnight to midnight
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=22),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('1h'),
                                run_length=pd.Timedelta('24h'),
                                interval_label='beginning')
    issue_time = pd.Timestamp('20190423T2200Z')
    run_time = pd.Timestamp('20190422T1945Z')
    with pytest.raises(ValueError) as excinfo:
        main.run_persistence(session, obs_5min_begin, forecast, run_time,
                             issue_time)
    assert 'midnight to midnight' in str(excinfo.value)
def test_get_data_start_end_labels_obs_instant_fx_avg(site_metadata):
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='instant')
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=23),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('5min'),
                                run_length=pd.Timedelta('1d'),
                                interval_label='beginning')
    run_time = pd.Timestamp('20190422T1945Z')
    issue_time = pd.Timestamp('20190422T2300Z')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time, issue_time)
    assert data_start == pd.Timestamp('20190421T0000Z')
    assert data_end == pd.Timestamp('20190421T235959Z')
def test_get_data_start_end_labels_obs_fx_instant(site_metadata):
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='instant')
    forecast = default_forecast(
        site_metadata,
        issue_time_of_day=dt.time(hour=5),
        lead_time_to_start=pd.Timedelta('1h'),
        interval_length=pd.Timedelta('5min'),  # interval_length must be equal
        run_length=pd.Timedelta('1d'),
        interval_label='instant')  # if interval_label also instant
    run_time = pd.Timestamp('20190422T1945Z')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time)
    assert data_start == pd.Timestamp('20190421T0000Z')
    assert data_end == pd.Timestamp('20190421T235959Z')
示例#14
0
def test_run_persistence_interval_index(session, site_metadata,
                                        obs_5min_begin):
    # index=True not supported for day ahead
    forecast = default_forecast(
        site_metadata,
        issue_time_of_day=dt.time(hour=23),
        lead_time_to_start=pd.Timedelta('1h'),
        interval_length=pd.Timedelta('1h'),
        run_length=pd.Timedelta('24h'),
        interval_label='beginning')
    issue_time = pd.Timestamp('20190423T2300Z')
    run_time = pd.Timestamp('20190422T1945Z')
    with pytest.raises(ValueError) as excinfo:
        main.run_persistence(session, obs_5min_begin, forecast, run_time,
                             issue_time, index=True)
    assert 'index=True not supported' in str(excinfo.value)
def test_get_forecast_start_end_time_instant(site_metadata,
                                             adjust_for_interval_label):
    # instant
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=5),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('5min'),
                                run_length=pd.Timedelta('1h'),
                                interval_label='instant')
    issue_time = pd.Timestamp('20190422T0500')
    fx_start, fx_end = utils.get_forecast_start_end(forecast, issue_time,
                                                    adjust_for_interval_label)
    assert fx_start == pd.Timestamp('20190422T0600')
    fx_end_exp = pd.Timestamp('20190422T0700')
    if adjust_for_interval_label:
        fx_end_exp -= pd.Timedelta('1n')
    assert fx_end == fx_end_exp
def test_get_data_start_end_labels_obs_longer_than_1h_day_ahead(site_metadata):
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('2h'),
                                      interval_label='beginning')
    forecast = default_forecast(
        site_metadata,
        issue_time_of_day=dt.time(hour=5),
        lead_time_to_start=pd.Timedelta('1h'),
        interval_length=pd.Timedelta('1h'),
        run_length=pd.Timedelta('1d'),  # day ahead
        interval_label='beginning')
    run_time = pd.Timestamp('20190422T1945Z')
    # day ahead doesn't care about obs interval length
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time)
    assert data_start == pd.Timestamp('20190421T0000Z')
    assert data_end == pd.Timestamp('20190422T0000Z')
示例#17
0
def test_run_persistence_scalar(session, site_metadata, obs_5min_begin,
                                interval_label, mocker):
    run_time = pd.Timestamp('20190101T1945Z')
    # intraday, index=False
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=23),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('1h'),
                                run_length=pd.Timedelta('1h'),
                                interval_label=interval_label)
    issue_time = pd.Timestamp('20190101T2300Z')
    mocker.spy(main.persistence, 'persistence_scalar')
    out = main.run_persistence(session, obs_5min_begin, forecast, run_time,
                               issue_time)
    assert isinstance(out, pd.Series)
    assert len(out) == 1
    assert main.persistence.persistence_scalar.call_count == 1
def test_check_persistence_compatibility(obs_kw, fx_kw, index, site_metadata):
    obs_dict = {
        'interval_label': 'ending',
        'interval_value_type': 'interval_mean',
        'interval_length': pd.Timedelta('30min')
    }
    fx_dict = {
        'interval_label': 'ending',
        'interval_value_type': 'interval_mean',
        'interval_length': pd.Timedelta('1h'),
        'run_length': pd.Timedelta('12h')
    }
    obs_dict.update(obs_kw)
    fx_dict.update(fx_kw)
    obs = default_observation(site_metadata, **obs_dict)
    fx = default_forecast(site_metadata, **fx_dict)
    with pytest.raises(ValueError):
        utils.check_persistence_compatibility(obs, fx, index)
def test_get_data_start_end_time_tz(site_metadata, variable, rl, issue, run,
                                    expected_start, expected_end):
    observation = default_observation(site_metadata,
                                      variable=variable,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='ending')
    forecast = default_forecast(site_metadata,
                                variable=variable,
                                issue_time_of_day=dt.time(hour=23),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('1h'),
                                run_length=pd.Timedelta(rl),
                                interval_label='beginning')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    pd.Timestamp(run),
                                                    pd.Timestamp(issue))
    assert data_start == pd.Timestamp(expected_start)
    assert data_end == pd.Timestamp(expected_end)
def test_get_data_start_end_time_dayahead(site_metadata, rl, rt, lt,
                                          expected_start, expected_end):
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='beginning')

    run_time = pd.Timestamp(rt)
    issue_time = pd.Timestamp('20190410T2300Z')
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=23),
                                lead_time_to_start=pd.Timedelta(lt),
                                interval_length=pd.Timedelta('1h'),
                                run_length=pd.Timedelta(rl),
                                interval_label='beginning')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time, issue_time)
    assert data_start == pd.Timestamp(expected_start)
    assert data_end == pd.Timestamp(expected_end)
def test_get_data_start_end_labels_obs_fx_instant(site_metadata, lead, issue,
                                                  it):
    observation = default_observation(site_metadata,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='instant')
    # interval length of forecast and obs must be equal if interval label is
    # instant
    forecast = default_forecast(site_metadata,
                                issue_time_of_day=dt.time(hour=it),
                                lead_time_to_start=pd.Timedelta(lead),
                                interval_length=pd.Timedelta('5min'),
                                run_length=pd.Timedelta('1d'),
                                interval_label='instant')
    issue_time = pd.Timestamp(issue)
    run_time = issue_time - pd.Timedelta('75min')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time, issue_time)
    assert data_start == pd.Timestamp('20190421T0000Z')
    assert data_end == pd.Timestamp('20190421T235959Z')
def test_get_forecast_start_end_time_weekahead(site_metadata, variable,
                                               expected_start, expected_end):
    observation = default_observation(site_metadata,
                                      variable=variable,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='beginning')

    run_time = pd.Timestamp('20190410T0630Z')
    forecast = default_forecast(site_metadata,
                                variable=variable,
                                issue_time_of_day=dt.time(hour=10),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('1h'),
                                run_length=pd.Timedelta('1d'),
                                interval_label='beginning')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time)
    assert data_start == pd.Timestamp(expected_start)
    assert data_end == pd.Timestamp(expected_end)
def test_get_data_start_end_time_weekahead_not_midnight(site_metadata):
    variable = 'net_load'
    observation = default_observation(site_metadata,
                                      variable=variable,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='beginning')

    run_time = pd.Timestamp('20190410T1030Z')
    issue_time = pd.Timestamp('20190410T1200Z')
    # fx from 2019-04-11 12:00
    forecast = default_forecast(site_metadata,
                                variable=variable,
                                issue_time_of_day=dt.time(hour=12),
                                lead_time_to_start=pd.Timedelta('1d'),
                                interval_length=pd.Timedelta('1h'),
                                run_length=pd.Timedelta('1d'),
                                interval_label='beginning')
    data_start, data_end = utils.get_data_start_end(observation, forecast,
                                                    run_time, issue_time)
    assert data_start == pd.Timestamp('20190404T1200Z')
    assert data_end == pd.Timestamp('20190405T1200Z')
示例#24
0
def test_run_persistence_weekahead(session, site_metadata, mocker):
    variable = 'net_load'
    observation = default_observation(site_metadata,
                                      variable=variable,
                                      interval_length=pd.Timedelta('5min'),
                                      interval_label='beginning')

    run_time = pd.Timestamp('20190110T1945Z')
    forecast = default_forecast(site_metadata,
                                variable=variable,
                                issue_time_of_day=dt.time(hour=23),
                                lead_time_to_start=pd.Timedelta('1h'),
                                interval_length=pd.Timedelta('1h'),
                                run_length=pd.Timedelta('1d'),
                                interval_label='beginning')
    issue_time = pd.Timestamp('20190111T2300Z')
    mocker.spy(main.persistence, 'persistence_interval')
    out = main.run_persistence(session, observation, forecast, run_time,
                               issue_time)
    assert isinstance(out, pd.Series)
    assert len(out) == 24
    assert main.persistence.persistence_interval.call_count == 1
def test_find_next_issue_time_from_last_forecast(fxargs, last_time, expected,
                                                 site_metadata):
    fx = default_forecast(site_metadata, **fxargs)
    out = utils.find_next_issue_time_from_last_forecast(fx, last_time)
    assert out == expected