示例#1
0
def test_state():
    array1 = np.array([1, 2, 3])
    array2 = np.array([2, 3, 4])

    state1 = State()
    state1.a = 1
    state1.b = True
    state1.c = array1
    assert state1.__len__() == 3
    assert state1.a == 1
    assert state1.b == True
    assert all([input == output for input, output in zip(array1, state1.c)])

    state2 = State()
    state2.b = False
    state2.d = array2
    state1.update(state2)
    assert state1.__len__() == 4
    assert state1.a == 1
    assert state2.b == False
    assert all([input == output for input, output in zip(array1, state1.c)])
    assert all([input == output for input, output in zip(array2, state1.d)])
示例#2
0
def strain_calculation_parameters(substrate_material,
                                  layer_material,
                                  should_print=False,
                                  SO=False):
    """Will extract materials parameters and perform a bit of conditioning to the values.
    
    Returns a solcore State object with the following keys:
    
        -- ac, the conduction band deformation potential
        -- av, the valence band deformation potential
        -- b,  the valence band splitting deformation potential
        -- C11, element of the elastic stiffness tensor
        -- C12, element of the elastic stiffness tensor
        -- a0, the unstrained substrate lattice constant
        -- a, the unstrained layer lattice constant
        -- epsilon, in-plain strain
        -- epsilon_perp, out-plain strain
        -- e_xx, in-plain strain (e_xx = epsilon)
        -- e_yy, in-plain strain (e_yy = epsilon)
        -- e_zz, out-plain strain (e_zz = epsilon_perp)
        -- Tre, element of come matrix (Tre = e_xx + e_yy + e_zz)
        -- Pe, parameter use by Chuang
        -- Qe, parameter use by Chuang
        -- cb_hydrostatic_shift, CB moved by this amount
        -- vb_hydrostatic_shift, VB moved by this amount
        -- vb_shear_splitting, VB split by this amount (i.e. HH/LH separation)
        -- delta_Ec, final conduction band shift
        -- delta_Elh, final light hole band shift
        -- delta_Ehh, final heavy hole band shift
    
    Care has to be taken when calculating the energy shifts because different 
    sign conversion are used by different authors. Here we use the approach of
    S. L. Chuang, 'Physics of optoelectronic devices'. 
    
    Note that this requires that the 'a_v' deformation potential to be 
    positive, where as Vurgaftman defines this a negative!
    """

    sub = substrate_material
    mat = layer_material
    k = State()

    # deformation potentials
    k.av = abs(mat.a_v)  # make sure that av is positive for this calculation
    k.ac = mat.a_c  # Vurgaftman uses the convention that this is negative
    k.b = mat.b

    # Matrix elements from elastic stiffness tensor
    k.C11 = mat.c11
    k.C12 = mat.c12
    if should_print: print(sub, mat)
    # Strain fractions
    k.a0 = sub.lattice_constant
    k.a = mat.lattice_constant
    k.epsilon = (k.a0 - k.a) / k.a  # in-plain strain
    k.epsilon_perp = -2 * k.C12 / k.C11 * k.epsilon  # out-plain
    k.e_xx = k.epsilon
    k.e_yy = k.epsilon
    k.e_zz = k.epsilon_perp
    k.Tre = (k.e_xx + k.e_yy + k.e_zz)
    k.Pe = -k.av * k.Tre
    k.Qe = -k.b / 2 * (k.e_xx + k.e_yy - 2 * k.e_zz)

    k.cb_hydrostatic_shift = k.ac * k.Tre
    k.vb_hydrostatic_shift = k.av * k.Tre
    k.vb_shear_splitting = 2 * k.b * (1 + 2 * k.C12 / k.C11) * k.epsilon

    # Shifts and splittings
    k.delta_Ec = k.ac * k.Tre

    if should_print: print(k.ac, k.Tre)

    k.delta_Ehh = -k.Pe - k.Qe
    k.delta_Elh = -k.Pe + k.Qe
    k.delta_Eso = 0.0

    if SO:
        k.delta = mat.spin_orbit_splitting
        shift = k.delta**2 + 2 * k.delta * k.Qe + 9 * k.Qe**2
        k.delta_Elh = -k.Pe + 0.5 * (k.Qe - k.delta + np.sqrt(shift))
        k.delta_Eso = -k.Pe + 0.5 * (k.Qe - k.delta - np.sqrt(shift))

    strain_calculation_asserts(k, should_print=should_print)

    if should_print:
        print()
        print("Lattice:")
        print("a0", k.a0)
        print("a", k.a)
        print()
        print("Deformation potentials:")
        print("ac = ", solcore.asUnit(k.ac, 'eV'))
        print("av = ", solcore.asUnit(k.av, 'eV'))
        print("ac - av = ", solcore.asUnit(k.ac - k.av, 'eV'))
        print("b = ", solcore.asUnit(k.b, 'eV'))
        print()
        print("Matrix elements from elastic stiffness tensor:")
        print("C_11 = ", solcore.asUnit(k.C11, "GPa"))
        print("C_12 = ", solcore.asUnit(k.C12, "GPa"))
        print()
        print("Strain fractions:")
        print("e_xx = e_yy = epsilon = ", k.epsilon)
        print("e_zz = epsilon_perp = ", k.epsilon_perp)
        print("e_xx + e_yy + e_zz = Tre = ", k.Tre)
        print()
        print("Shifts and splittings:")
        print("Pe = -av * Tre = ", solcore.asUnit(k.Pe, 'eV'))
        print("Qe = -b/2*(e_xx + e_yy - 2*e_zz) = ",
              solcore.asUnit(k.Qe, 'eV'))
        print("dEc = ac * Tre = ", solcore.asUnit(k.delta_Ec, 'eV'))
        print("dEhh = av * Tre + b[1 + 2*C_11/C_12]*epsilon = -Pe - Qe = ",
              solcore.asUnit(k.delta_Ehh, 'eV'))
        print("dElh = av * Tre - b[1 + 2*C_11/C_12]*epsilon = -Pe + Qe = ",
              solcore.asUnit(k.delta_Elh, 'eV'))
        print()

    return k