示例#1
0
    def _testACT(self, input_size, hidden_size, output_size, seq_len,
                 batch_size, core, get_state_for_halting):
        threshold = 0.99
        act = pondering_rnn.ACTCore(core, output_size, threshold,
                                    get_state_for_halting)
        seq_input = tf.random_uniform(shape=(seq_len, batch_size, input_size))
        initial_state = core.initial_state(batch_size)
        seq_output = tf.nn.dynamic_rnn(act,
                                       seq_input,
                                       time_major=True,
                                       initial_state=initial_state)
        for tensor in nest.flatten(seq_output):
            self.assertEqual(seq_input.dtype, tensor.dtype)

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            output = sess.run(seq_output)
        (final_out, (iteration, r_t)), final_cumul_state = output
        self.assertEqual((seq_len, batch_size, output_size), final_out.shape)
        self.assertEqual((seq_len, batch_size, 1), iteration.shape)
        self.assertTrue(np.all(iteration == np.floor(iteration)))
        state_shape = get_state_for_halting(
            initial_state).get_shape().as_list()
        self.assertEqual(tuple(state_shape),
                         get_state_for_halting(final_cumul_state).shape)
        self.assertEqual((seq_len, batch_size, 1), r_t.shape)
        self.assertTrue(np.all(r_t >= 0))
        self.assertTrue(np.all(r_t <= threshold))
示例#2
0
 def testOutput2D(self):
     core = Output2DCore(name="output_2d_core")
     err = "Output of core should be 1D."
     with self.assertRaisesRegexp(ValueError, err):
         pondering_rnn.ACTCore(core, 1, 0.99, lambda state: state)
示例#3
0
 def testOutputTuple(self):
     core = OutputTupleCore(name="output_tuple_core")
     err = "Output of core should be single Tensor."
     with self.assertRaisesRegexp(ValueError, err):
         pondering_rnn.ACTCore(core, 1, 0.99, lambda state: state)