os.makedirs(init_w_path) rnd = np.random.RandomState(1231) nhid_l0 = 1025 nhid_l1 = 512 nhid_l2 = 64 # Create the AE in 1 nvis, nhid = w*h, nhid_l0 path_ini_params_l0 = init_w_path + "dae_w_l0_init_" + str(nvis) + '_' +\ str(nhid) + ".pkl" dae_l0 = DenoisingAutoencoder(input, nvis=nvis, nhid=nhid, L1_reg=0., L2_reg=1e-2, rnd=rnd, nonlinearity=NonLinearity.SIGMOID, cost_type=CostType.MeanSquared, reverse=False, corruption_level=0.2) if not os.path.isfile(path_ini_params_l0): dae_l0.save_params(path_ini_params_l0) else: dae_l0.set_params_vals(path_ini_params_l0) # Create the AE in 2 nvis, nhid = nhid_l0, nhid_l1 path_ini_params_l1 = init_w_path + "dae_w_l1_init_" + str(nvis) + '_' +\ str(nhid) + ".pkl" dae_l1 = DenoisingAutoencoder(dae_l0.encode((input)),
print len(id_deep_conv_ae_in), id_deep_conv_ae_in path_ini_params_deep_conv_ae_in = init_w_path +\ "deep_conv_ae_init_" + id_deep_conv_ae_in + ".pkl" if not os.path.isfile(path_ini_params_deep_conv_ae_in): deep_conv_ae_in.save_params(path_ini_params_deep_conv_ae_in) else: deep_conv_ae_in.set_params_vals(path_ini_params_deep_conv_ae_in) # Create the AE in 1 nvis, nhid = deep_conv_ae_in.encoder.output_size_flatten, nhid_l0 path_ini_params_l0 = init_w_path + "dae_w_l0_init_" + str(nvis) + '_' +\ str(nhid) + ".pkl" dae_l0 = DenoisingAutoencoder(deep_conv_ae_in.encoder.output.flatten(2), nvis=nvis, nhid=nhid, L1_reg=0., L2_reg=0., rnd=rnd, nonlinearity=NonLinearity.TANH, cost_type=CostType.MeanSquared, reverse=False, corruption_level=0.2) if not os.path.isfile(path_ini_params_l0): dae_l0.save_params(path_ini_params_l0) else: dae_l0.set_params_vals(path_ini_params_l0) # Create the AE in 2 # nvis, nhid = nhid_l0, nhid_l1 # path_ini_params_l1 = init_w_path + "dae_w_l1_init_" + str(nvis) + '_' +\ # str(nhid) + ".pkl" # dae_l1 = DenoisingAutoencoder(dae_l0.encode(),