示例#1
0
def repo_get(config: Config, repository: str):
    """Get repository.

    Repository name must be in ``owner/project`` format.
    """
    repository = check_repo(repository)
    client = Client(config)
    table(client.repository_get(repository=repository))
示例#2
0
def login(config: Config):
    """Obtain authentication token."""
    username = click.prompt("Username")
    password = click.prompt("Password", hide_input=True)

    client = Client(config)
    config.token = client.login(username=username, password=password)
    config.save()
示例#3
0
def test_run_hash(run_hash):
    config_path = os.path.expanduser(consts.DEFAULT_CONFIG_PATH)
    config = Config(config_path)
    client = Client(config)

    res = client.get_results_by_run_hash(run_hash=run_hash)

    assert isinstance(res, dict)
    assert res["Top 5 Accuracy"] == 0.9795
示例#4
0
def test_check_results(run_hash):
    client = Client.public()

    r = [{
        "model": "FixResNeXt-101 32x48d",
        "task": "Image Classification",
        "dataset_name": "ImageNet",
        "results": {
            "Top 1 Accuracy": 0.8636199999999999,
            "Top 5 Accuracy": 0.9795,
        },
        "arxiv_id": "1906.06423",
        "pwc_id": None,
        "pytorch_hub_id": None,
        "paper_results": None,
        "run_hash": run_hash,
    }]

    res = client.check_results(r)
    assert len(res["response"]["errors"]) == 0

    r[0]["task"] = "Make a cup of tea"
    res = client.check_results(r)

    e = res["response"]["errors"][0]
    assert "error" in e
示例#5
0
    def cache_exists(self):
        """
        Checks whether the cache exists in the sotabench.com database - if so
        then sets self.results to cached results and returns True.

        You can use this property for control flow to break a for loop over a dataset
        after the first iteration. This prevents re-running the same calculation for the
        same model twice.

        Q: Why should the user use this?
        A: If you want fast "continuous evaluation" and don't want to avoid rerunning the same model over and over
            each time you commit something new to your repository.

        Examples:
            Breaking a for loop for a PyTorch evaluation

            .. code-block:: python

                ...

                with torch.no_grad():
                    for i, (input, target) in enumerate(test_loader):
                        input = input.to(device=device, non_blocking=True)
                        target = target.to(device=device, non_blocking=True)
                        output = model(input)

                        image_ids = [img[0].split('/')[-1].replace('.JPEG', '') for img in test_loader.dataset.imgs[i*test_loader.batch_size:(i+1)*test_loader.batch_size]]

                        evaluator.add(dict(zip(image_ids, list(output.cpu().numpy()))))

                        if evaluator.cache_exists:
                            break

                evaluator.save()  # uses the cached results

        This logic is for the server; it will not break the loop if you evaluate locally.

        :return: bool or None (if not in check mode)
        """
        if not self.first_batch_processed:
            raise ValueError(
                'No batches of data have been processed so no batch_hash exists'
            )

        if not is_server():  # we only check the cache on the server
            return None

        client = Client.public()
        cached_res = client.get_results_by_run_hash(self.batch_hash)
        if cached_res:
            self.results = cached_res
            self.cached_results = True

            print("No model change detected (using the first batch run "
                  "hash). Will use cached results.")
            return True

        return False
示例#6
0
    def cache_exists(self):
        """
        Checks whether the cache exists in the sotabench.com database - if so
        then sets self.results to cached results and returns True.

        You can use this property for control flow to break a for loop over a dataset
        after the first iteration. This prevents re-running the same calculation for the
        same model twice.

        Q: Why should the user use this?
        A: If you want fast "continuous evaluation" and don't want to avoid rerunning the same model over and over
            each time you commit something new to your repository.

        Examples:
            Breaking a for loop if the model is the same as last time we ran

            .. code-block:: python

                ...

                with torch.no_grad():
                    for i, (input, target) in enumerate(iterator):
                        ...
                        output = model(input)
                        # optional formatting of output here to be a list of detection dicts
                        evaluator.add(output)

                        if evaluator.cache_exists:
                            break

                evaluator.save()

        This logic is for the server; it will not break the loop if you evaluate locally.

        :return: bool or None (if not on server)
        """

        if not is_server():  # we only check the cache on the server
            return None

        if not self.first_batch_processed:
            return False

        if self._cache_exists is not None:
            return self._cache_exists

        client = Client.public()
        cached_res = client.get_results_by_run_hash(self.batch_hash)
        if cached_res:
            self.results = cached_res
            self.cached_results = True
            print("No model change detected (using the first batch run "
                  f"hash {self.batch_hash}). Will use cached results.")

            self._cache_exists = True
        else:
            self._cache_exists = False
        return self._cache_exists
示例#7
0
def evaluate_language_model(
    model,
    test_loader,
    model_output_transform,
    send_data_to_device,
    device="cuda",
):
    n_steps, eval_loss = 0, 0

    iterator = tqdm.tqdm(test_loader, desc="Evaluation")

    with torch.no_grad():
        for i, labels in enumerate(iterator):

            labels, _ = send_data_to_device(labels, None, device=device)
            output = model(labels)

            if model_output_transform is not None:
                output = model_output_transform(output, None, model=model)

            shift_logits = output[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            objective = CrossEntropyLoss(ignore_index=-1)
            loss = objective(
                shift_logits.view(-1, shift_logits.size(-1)),
                shift_labels.view(-1),
            )
            eval_loss += loss.item()
            n_steps += 1
            iterator.desc = (
                f"Eval loss: {eval_loss / n_steps} "
                f"ppl: {np.exp(eval_loss / n_steps)}"
            )

            if i == 0:  # for sotabench.com caching of evaluation
                run_hash = calculate_run_hash([eval_loss], output)
                # if we are in check model we don't need to go beyond the
                # first batch
                if in_check_mode():
                    iterator.close()
                    break

                # get the cached values from sotabench.com if available
                client = Client.public()
                cached_res = client.get_results_by_run_hash(run_hash)
                if cached_res:
                    iterator.close()
                    print(
                        "No model change detected (using the first batch "
                        "run_hash). Returning cached results."
                    )
                    return cached_res, run_hash

    return {"Perplexity": np.exp(eval_loss / n_steps)}, run_hash
示例#8
0
    def cache_exists(self):
        """
        Checks whether the cache exists in the sotabench.com database - if so
        then sets self.results to cached results and returns True.

        You can use this property for control flow to break a for loop over a dataset
        after the first iteration. This prevents rerunning the same calculation for the
        same model twice.

        Examples:
            Breaking a for loop

            .. code-block:: python

                ...

                with torch.no_grad():
                    for i, (input, target) in enumerate(iterator):
                        ...
                        output = model(input)
                        # optional formatting of output here to be a list of detection dicts
                        evaluator.add(output)

                        if evaluator.cache_exists:
                            break

                evaluator.save()

        :return: bool or None (if not in check mode)
        """

        if not is_server():  # we only check the cache on the server
            return None

        if not self.first_batch_processed:
            return False

        if self._cache_exists is not None:
            return self._cache_exists

        client = Client.public()
        cached_res = client.get_results_by_run_hash(self.batch_hash)
        if cached_res:
            self.results = cached_res
            self.cached_results = True
            print("No model change detected (using the first batch run "
                  "hash). Will use cached results.")
            self._cache_exists = True
        else:
            self._cache_exists = False
        return self._cache_exists
示例#9
0
def evaluate_classification(model,
                            test_loader,
                            model_output_transform,
                            send_data_to_device,
                            device='cuda'):
    batch_time = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    end = time.time()

    iterator = tqdm.tqdm(test_loader, file=sys.stdout)

    with torch.no_grad():
        for i, (input, target) in enumerate(iterator):

            input, target = send_data_to_device(input, target, device=device)
            output = model(input)

            if model_output_transform is not None:
                output = model_output_transform(output, target)

            check_metric_inputs(output, target, test_loader.dataset, i)
            prec1, prec5 = accuracy(output, target, topk=(1, 5))
            top1.update(prec1.item(), input.size(0))
            top5.update(prec5.item(), input.size(0))
            batch_time.update(time.time() - end)
            end = time.time()

            if i == 0:  # for sotabench.com caching of evaluation
                run_hash = calculate_run_hash([prec1, prec5], output)
                # if we are in check model we don't need to go beyond the first batch
                if in_check_mode():
                    iterator.close()
                    break

                # get the cached values from sotabench.com if available
                client = Client.public()
                cached_res = client.get_results_by_run_hash(run_hash)
                if cached_res:
                    iterator.close()
                    print(
                        "No model change detected (using the first batch run_hash). Returning cached results."
                    )
                    return cached_res, run_hash

    return {
        'Top 1 Accuracy': top1.avg / 100,
        'Top 5 Accuracy': top5.avg / 100
    }, run_hash
示例#10
0
    def cache_exists(self):
        """
        Checks whether the cache exists in the sotabench.com database - if so
        then sets self.results to cached results and returns True.

        You can use this property for control flow to break a for loop over a dataset
        after the first iteration. This prevents rerunning the same calculation for the
        same model twice.

        Examples:
            Breaking a for loop

            .. code-block:: python

                ...

                with torch.no_grad():
                    for i, (input, target) in enumerate(iterator):
                        ...
                        output = model(input)
                        # output and target should then be flattened into 1D np.ndarrays and passed in below
                        evaluator.update(output=output, target=target)

                        if evaluator.cache_exists:
                            break

                evaluator.save()

        :return: bool or None (if not in check mode)
        """

        if not self.first_batch_processed:
            raise ValueError(
                'No batches of data have been processed so no batch_hash exists'
            )

        if not is_server():
            return None

        client = Client.public()
        cached_res = client.get_results_by_run_hash(self.batch_hash)
        if cached_res:
            self.results = cached_res
            self.cached_results = True
            print("No model change detected (using the first batch run "
                  "hash). Will use cached results.")
            return True

        return False
示例#11
0
文件: utils.py 项目: xvdp/torchbench
def evaluate_detection_coco(model,
                            test_loader,
                            model_output_transform,
                            send_data_to_device,
                            device="cuda",
                            force=False):

    coco = get_coco_api_from_dataset(test_loader.dataset)
    iou_types = ['bbox']
    coco_evaluator = CocoEvaluator(coco, iou_types)

    iterator = tqdm.tqdm(test_loader, desc="Evaluation", mininterval=5)

    init_time = time.time()

    with torch.no_grad():
        for i, (input, target) in enumerate(iterator):
            input, target = send_data_to_device(input, target, device=device)
            original_output = model(input)
            output, target = model_output_transform(original_output, target)

            result = {
                tar["image_id"].item(): out
                for tar, out in zip(target, output)
            }
            coco_evaluator.update(result)

            if i == 0:  # for sotabench.com caching of evaluation
                run_hash = calculate_run_hash([], original_output)
                # if we are in check model we don't need to go beyond the first
                # batch
                if in_check_mode():
                    iterator.close()
                    break

                if not force:
                    # get the cached values from sotabench.com if available
                    client = Client.public()
                    cached_res = client.get_results_by_run_hash(run_hash)
                    if cached_res:
                        iterator.close()
                        print(
                            "No model change detected (using the first batch run "
                            "hash). Returning cached results.")

                        speed_mem_metrics = {
                            'Tasks / Evaluation Time': None,
                            'Evaluation Time': None,
                            'Tasks': None,
                            'Max Memory Allocated (Total)': None,
                        }

                        return cached_res, speed_mem_metrics, run_hash

    exec_time = (time.time() - init_time)

    coco_evaluator.synchronize_between_processes()
    coco_evaluator.accumulate()
    coco_evaluator.summarize()

    memory_allocated = torch.cuda.max_memory_allocated(device=device)
    torch.cuda.reset_max_memory_allocated(device=device)

    speed_mem_metrics = {
        'Tasks / Evaluation Time': len(test_loader.dataset) / exec_time,
        'Tasks': len(test_loader.dataset),
        'Evaluation Time': (time.time() - init_time),
        'Max Memory Allocated (Total)': memory_allocated,
    }

    return (get_coco_metrics(coco_evaluator), speed_mem_metrics, run_hash)
示例#12
0
def repo_list(config: Config, owner):
    """List repositories."""
    client = Client(config)
    table(client.repository_list(username=owner))
示例#13
0
def build_get(config: Config, repository: str, run_number: int):
    """Get build details."""
    repository = check_repo(repository)
    client = Client(config)
    table(client.build_get(repository=repository, run_number=run_number))
示例#14
0
def build_list(config: Config, repository: str):
    """List builds for a given repository.."""
    repository = check_repo(repository)
    client = Client(config)
    table(client.build_list(repository=repository))
示例#15
0
def build_start(config: Config, repository):
    """Start build."""
    repository = check_repo(repository)
    client = Client(config)
    table(client.build_start(repository=repository))
示例#16
0
def evaluate_segmentation(
    model,
    test_loader,
    model_output_transform,
    send_data_to_device,
    num_classes,
    device="cuda",
):
    confmat = ConfusionMatrix(num_classes)

    iterator = tqdm.tqdm(test_loader, desc="Evaluation", mininterval=5)

    init_time = time.time()

    with torch.no_grad():
        for i, (input, target) in enumerate(iterator):
            input, target = send_data_to_device(input, target, device=device)
            output = model(input)
            output, target = model_output_transform(output, target)
            confmat.update(target, output)

            if i == 0:  # for sotabench.com caching of evaluation
                run_hash = calculate_run_hash([], output)
                # if we are in check model we don't need to go beyond the first
                # batch
                if in_check_mode():
                    iterator.close()
                    break

                # get the cached values from sotabench.com if available
                client = Client.public()
                cached_res = client.get_results_by_run_hash(run_hash)
                if cached_res:
                    iterator.close()
                    print(
                        "No model change detected (using the first batch run "
                        "hash). Returning cached results.")

                    speed_mem_metrics = {
                        "Tasks / Evaluation Time": None,
                        "Evaluation Time": None,
                        "Tasks": None,
                        "Max Memory Allocated (Total)": None,
                    }

                    return cached_res, speed_mem_metrics, run_hash

    exec_time = time.time() - init_time

    acc_global, acc, iu = confmat.compute()

    memory_allocated = torch.cuda.max_memory_allocated(device=device)
    torch.cuda.reset_max_memory_allocated(device=device)

    speed_mem_metrics = {
        "Tasks / Evaluation Time": len(test_loader.dataset) / exec_time,
        "Tasks": len(test_loader.dataset),
        "Evaluation Time": (time.time() - init_time),
        "Max Memory Allocated (Total)": memory_allocated,
    }

    return (
        {
            "Accuracy": acc_global.item(),
            "Mean IOU": iu.mean().item()
        },
        speed_mem_metrics,
        run_hash,
    )
示例#17
0
def evaluate_classification(
    model,
    test_loader,
    model_output_transform,
    send_data_to_device,
    device="cuda",
    force=False
):
    top1 = AverageMeter()
    top5 = AverageMeter()
    iterator = tqdm.tqdm(test_loader, desc="Evaluation", mininterval=5)

    init_time = time.time()

    with torch.no_grad():
        for i, (input, target) in enumerate(iterator):

            input, target = send_data_to_device(input, target, device=device)
            output = model(input)

            if model_output_transform is not None:
                output = model_output_transform(output, target, model=model)

            check_metric_inputs(output, target, test_loader.dataset, i)
            prec1, prec5 = accuracy(output, target, topk=(1, 5))
            top1.update(prec1.item(), input.size(0))
            top5.update(prec5.item(), input.size(0))

            if i == 0:  # for sotabench.com caching of evaluation
                run_hash = calculate_run_hash([prec1, prec5], output)
                # if we are in check model we don't need to go beyond the first
                # batch
                if in_check_mode():
                    iterator.close()
                    break

                if not force:
                    # get the cached values from sotabench.com if available
                    client = Client.public()
                    cached_res = client.get_results_by_run_hash(run_hash)
                    if cached_res:
                        iterator.close()
                        print(
                            "No model change detected (using the first batch run "
                            "hash). Returning cached results."
                        )

                        speed_mem_metrics = {
                            'Tasks / Evaluation Time': None,
                            'Evaluation Time': None,
                            'Tasks': None,
                            'Max Memory Allocated (Total)': None,
                        }

                        return cached_res, speed_mem_metrics, run_hash

    exec_time = (time.time() - init_time)

    memory_allocated = torch.cuda.max_memory_allocated(device=device)
    torch.cuda.reset_max_memory_allocated(device=device)

    speed_mem_metrics = {
        'Tasks / Evaluation Time': len(test_loader.dataset) / exec_time,
        'Tasks': len(test_loader.dataset),
        'Evaluation Time': (time.time() - init_time),
        'Max Memory Allocated (Total)': memory_allocated,
    }

    return (
        {"Top 1 Accuracy": top1.avg / 100,
         "Top 5 Accuracy": top5.avg / 100}, speed_mem_metrics,
        run_hash,
    )