示例#1
0
class AudioTrack(AudioStreamTrack):
    def __init__(self, loop):
        super().__init__()

        self.__in_stream = InputStream(
            blocksize=1920,
            callback=self.__callback,
            dtype='int16',
            channels=1,
        )
        self.__queue = Queue()
        self.loop = loop

    def __callback(self, indata, frame_count, time_info, status):
        self.__queue.put_nowait([indata.copy(), status])

    async def recv(self):
        if self.readyState != "live":
            raise MediaStreamError

        data = await self.__queue.get()
        if not data:
            self.stop()
            raise MediaStreamError

        try:
            indata, _ = data
            frame = AudioFrame.from_ndarray(indata.reshape(indata.shape[::-1]),
                                            format='s16',
                                            layout='mono')

            sample_rate = indata.shape[0]

            if hasattr(self, "_timestamp"):
                samples = int((time.time() - self._start) * sample_rate)
                self._timestamp += samples
            else:
                self._start = time.time()
                self._timestamp = 0

            frame.pts = self._timestamp
            frame.sample_rate = sample_rate
            frame.time_base = fractions.Fraction(1, sample_rate)
            return frame
        except:
            Logger.exception('Audio:')

            self.stop()
            raise MediaStreamError

    def __enter__(self):
        return self.__in_stream.__enter__()

    def __exit__(self, type, value, traceback):
        self.__queue.put_nowait(None)
        self.__in_stream.__exit__(type, value, traceback)
示例#2
0
    def __init__(self, loop):
        super().__init__()

        self.__in_stream = InputStream(
            blocksize=1920,
            callback=self.__callback,
            dtype='int16',
            channels=1,
        )
        self.__queue = Queue()
        self.loop = loop
示例#3
0
def audio_recorder(final_file_name, temp_video_file, temp_audio_file):

    q = queue.Queue()

    def callback(indata, frames, time, status):
        q.put(indata.copy())

    device_info = query_devices(0, 'input')
    samplerate = int(device_info['default_samplerate'])
    initial_time = time()
    with SoundFile("Recorded Videos/" + temp_audio_file + ".wav",
                   mode='x',
                   samplerate=samplerate,
                   channels=2) as file:
        with InputStream(samplerate=samplerate,
                         device=0,
                         channels=2,
                         callback=callback):
            while not stop:
                file.write(q.get())

    print("счет1 ", count1)
    print("time()-initial_time = ", time() - initial_time)
    fps_real = count1 / (time() - initial_time)
    processing_condition_showing("Обработка")
    print("Действительный fps ", fps_real)

    changing_fps(fps_real, temp_video_file)

    #merging
    sound = AudioSegment.from_wav("Recorded Videos/" + temp_audio_file +
                                  ".wav")
    sound.export("Recorded Videos/" + temp_audio_file + ".mp3")

    clip = mpe.VideoFileClip("Recorded Videos/" + temp_video_file +
                             "_corrected.avi")
    audio = mpe.AudioFileClip("Recorded Videos/" + temp_audio_file + ".mp3")

    final_audio = mpe.CompositeAudioClip([audio])
    final_file = clip.set_audio(final_audio)

    final_file.write_videofile("Recorded Videos/" + final_file_name + ".mp4")

    print("Удаление временных файлов")
    if isfile("Recorded Videos/" + temp_audio_file + ".mp3"):
        remove("Recorded Videos/" + temp_audio_file + ".mp3")
    if isfile("Recorded Videos/" + temp_audio_file + ".wav"):
        remove("Recorded Videos/" + temp_audio_file + ".wav")
    if isfile("Recorded Videos/" + temp_video_file + ".avi"):
        remove("Recorded Videos/" + temp_video_file + ".avi")

    if isfile("Recorded Videos/" + temp_video_file + "_corrected.avi"):
        remove("Recorded Videos/" + temp_video_file + "_corrected.avi")
    processing_condition_showing("done")
示例#4
0
 def __init__(self, devices, input_device, sr=48000, target_buffer=6, chunk_size=1024):
     ChunkPlayer.__init__(self,devices,sr)
     self.target_buffer = target_buffer
     self.input_device = input_device
     self.orig_data = numpy.array([],'float32')
     self.proc_data = numpy.zeros(target_buffer, dtype=self.orig_data.dtype)
     self.chunk_size = chunk_size
     self.jkl = int(chunk_size / 4)
     self._speed = 1.0
     self.pitch_shift = 0
     self.orig_index = 0
     self.proc_index = 0
     
     def callback(indata, frames, time, status):#
         self.orig_data = numpy.concatenate((self.orig_data ,indata[:,0] ))
     self.in_stream = InputStream(device=self.input_device,blocksize=chunk_size,samplerate=sr,channels=1,dtype='float32', callback = callback) 
     self.in_stream.start()
     time.sleep(target_buffer * chunk_size / sr)
     self._playing = False
     self.playing = True
示例#5
0
def test_sounddevice_lib():
    import time

    import numpy as np
    from sounddevice import InputStream, OutputStream, sleep as sd_sleep
    """ 
    if no portaudio installed:
    Traceback (most recent call last):
  File "TestSoundCard.py", line 42, in <module>
    test_sounddevice_lib()
  File "TestSoundCard.py", line 5, in test_sounddevice_lib
    import sounddevice as sd
  File "/usr/lib/python3.6/site-packages/sounddevice.py", line 64, in <module>
    raise OSError('PortAudio library not found')
  OSError: PortAudio library not found

    """

    duration = 2.5  # seconds

    rx_buffer = np.ones((10 ** 6, 2), dtype=np.float32)
    global current_rx, current_tx
    current_rx = 0
    current_tx = 0

    def rx_callback(indata: np.ndarray, frames: int, time, status):
        global current_rx
        if status:
            print(status)

        rx_buffer[current_rx:current_rx + frames] = indata
        current_rx += frames

    def tx_callback(outdata: np.ndarray, frames: int, time, status):
        global current_tx
        if status:
            print(status)

        outdata[:] = rx_buffer[current_tx:current_tx + frames]
        current_tx += frames

    with InputStream(channels=2, callback=rx_callback):
        sd_sleep(int(duration * 1000))

    print("Current rx", current_rx)

    with OutputStream(channels=2, callback=tx_callback):
        sd_sleep(int(duration * 1000))

    print("Current tx", current_tx)
    def _recording(self):
        start = time()
        sample_rate = int(query_devices(None, 'input')['default_samplerate'])
        channels = default.device[0]

        # Make sure the file is opened before recording anything:
        try:
            with SoundFile(self._file,
                           mode='x',
                           samplerate=sample_rate,
                           channels=channels) as file:
                with InputStream(callback=self._callback, channels=channels):

                    while time() - start < self._recording_time:
                        file.write(self._queue.get())
        except PortAudioError:
            showerror(title="ERROR", message="couldn't get a microphone")

        self._change_name(self._name)
        self._finished = True
示例#7
0
文件: run.py 项目: McSinyx/speakerid
if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('models', help='path to models')
    parser.add_argument('-l',
                        '--list-devices',
                        action=DeviceLister,
                        nargs=0,
                        help='print available audio devices and exit')
    parser.add_argument('-d',
                        '--device',
                        help='input device (numeric ID or substring)')
    args = parser.parse_args()
    choices = models(args.models)
    with suppress(ValueError, TypeError):
        args.device = int(args.device)

    while input('test ID: '):
        audio = []
        with InputStream(
                samplerate=44100,
                device=args.device,
                channels=1,
                dtype='i2',
                callback=lambda i, f, t, s: audio.append(concatenate(i))):
            input('hit return to stop recording')
            test = features(44100, concatenate(audio))
        scores = {name: model.score(test) for name, model in choices.items()}
        ID = max(scores, key=scores.get)
        print(ID, NAMES[ID])
示例#8
0
class MicSound(ChunkPlayer):
    def __init__(self, devices, input_device, sr=48000, target_buffer=6, chunk_size=1024):
        ChunkPlayer.__init__(self,devices,sr)
        self.target_buffer = target_buffer
        self.input_device = input_device
        self.orig_data = numpy.array([],'float32')
        self.proc_data = numpy.zeros(target_buffer, dtype=self.orig_data.dtype)
        self.chunk_size = chunk_size
        self.jkl = int(chunk_size / 4)
        self._speed = 1.0
        self.pitch_shift = 0
        self.orig_index = 0
        self.proc_index = 0
        
        def callback(indata, frames, time, status):#
            self.orig_data = numpy.concatenate((self.orig_data ,indata[:,0] ))
        self.in_stream = InputStream(device=self.input_device,blocksize=chunk_size,samplerate=sr,channels=1,dtype='float32', callback = callback) 
        self.in_stream.start()
        time.sleep(target_buffer * chunk_size / sr)
        self._playing = False
        self.playing = True
        
    
    def _init_stretching(self):
        self.orig_index = 0
        self.proc_index = 0
        
        self._window = numpy.hanning(self.chunk_size)
        self._angle = numpy.zeros(self.chunk_size, dtype=self.orig_data.dtype)
        self.proc_data = numpy.zeros(self.target_buffer, dtype=self.orig_data.dtype)

        self._zero_padding()

    def _zero_padding(self):
        padding = int(numpy.ceil(self.chunk_size * self.target_buffer / self.speed + self.chunk_size) - len( self.proc_data))
        if padding > 0:
            self.proc_data = numpy.concatenate((self.proc_data, numpy.zeros(padding, dtype=self.proc_data.dtype)))
        
    @property
    def speed(self):
        return self._speed

    @speed.setter
    def speed(self, value):
        self._speed = value
        self._zero_padding()

    @property
    def playing(self):
        """ Whether the sound is currently played. """
        return self._playing

    @playing.setter
    def playing(self, value):
        old_val = self._playing
        self._playing = value
        if not old_val and value:
            self.play_self()
        

    def play_self(self):
        self._init_stretching()
        def thread_target():
            streams = []
            for d in self.devices:
                streams.append(OutputStream(samplerate=self.sr, device=d, channels=1, blocksize=self.chunk_size, dtype='float32').__enter__())
            try:
                while self.playing:
                    print(streams)
                    chunk = self.next_chunk()
                    [s.write(chunk) for s in streams]
            except Exception as err:
                print('playing error')
                [s.__exit__() for s in streams]
                raise err

        play_thread = Thread(target=thread_target)
        play_thread.daemon = True
        play_thread.start()
            
    def pitch_shifter(self, chunk, shift):
        """ Pitch-Shift the given chunk by shift semi-tones. """
        freq = numpy.fft.rfft(chunk,self.chunk_size)
        
        N = len(freq)
        shifted_freq = numpy.zeros(N, freq.dtype)

        S = numpy.round(shift if shift > 0 else N + shift, 0)
        s = N - S

        shifted_freq[:S] = freq[s:]
        shifted_freq[S:] = freq[:s]

        shifted_chunk = numpy.fft.irfft(shifted_freq)

        return shifted_chunk.astype(chunk.dtype)

    def next_chunk(self):
        if self.orig_data.size >= self.chunk_size:
            chunk = self._time_stretcher(self.speed)

            if numpy.round(self.pitch_shift, 1) != 0:
                chunk = self.pitch_shifter(chunk, self.pitch_shift)

            return chunk

        print('_next_chunk empty')
        return numpy.array([],'float32')

    def _time_stretcher(self, speed):
        """ Real time time-scale without pitch modification.

            :param int i: index of the beginning of the chunk to stretch
            :param float speed: audio scale factor (if > 1 speed up the sound else slow it down)

            .. warning:: This method needs to store the phase computed from the previous chunk. Thus, it can only be called chunk by chunk.

        """
        #print('_time_stretcher')
        self.orig_data = self.orig_data[self.orig_index + max(0,self.orig_index-self.chunk_size):]

        
        self.proc_data = self.proc_data[self.chunk_size:]
        if self.orig_data.size < self.target_buffer * self.chunk_size:
            self.speed = min(self.speed,1.0)
            
        sy_size_increase = int(self.chunk_size / self.speed * self.target_buffer - self.proc_data.size)
        if sy_size_increase > 0:
            self.proc_data = numpy.concatenate((self.proc_data, numpy.zeros(sy_size_increase+64*1024, dtype=self.proc_data.dtype)))

        
        self.proc_index = 0
        self.orig_index = 0
        start = self.proc_index
        end = self.proc_index + self.chunk_size
                               
        if start >= end:
            raise StopIteration

        # The not so clean code below basically implements a phase vocoder
        out = numpy.zeros(self.chunk_size, dtype=numpy.complex)

        while self.proc_index < end:
            
            if (self.chunk_size + self.jkl)/max(self.speed,1) > self.orig_data.size:
                print('CUTOUT')
                return numpy.array([],'float32') 
            
            a, b = self.orig_index, self.orig_index+self.chunk_size
            #print(self._win.size,a,b)
            S1 = numpy.fft.fft(self._window * self.orig_data[a: b])
            S2 = numpy.fft.fft(self._window * self.orig_data[a + self.jkl: b + self.jkl])

            self._angle += (numpy.angle(S2) - numpy.angle(S1))
            self._angle = self._angle - 2.0 * numpy.pi * numpy.round(self._angle / (2.0 * numpy.pi))

            out.real, out.imag = numpy.cos(self._angle), numpy.sin(self._angle)
            self.proc_data[self.proc_index: self.proc_index + self.chunk_size] += self._window * numpy.fft.ifft(numpy.abs(S2) * out).real

            self.orig_index += int(self.jkl * self.speed)
            self.proc_index += self.jkl

        chunk = self.proc_data[start:end]
        
        return chunk