def initializeSoundexDict(freqDict): soundexScore = Soundex().soundex freqDictSoundex = {} for c in freqDict: freqDictSoundex[c] = soundexScore(c.capitalize()) return freqDictSoundex
def soundex(word): word = word.capitalize() sound_candidates = [] soundexScore = Soundex().soundex wordScore = soundexScore(word) for c in freqDict: if (wordScore == freqDictSoundex[c]): sound_candidates.append(c) if len(sound_candidates) == 0: sound_candidates.append(word) words = [] for i in range(min(len(sound_candidates), candidates_nb)): words.append(max(sound_candidates, key=P)) sound_candidates.remove(words[i]) return words
def __init__(self): """ Initialize necessary resources. """ self.dictionary_file = open(os.path.join( os.path.dirname(__file__), 'data/ml_rootwords.txt')) self.dictionary = self.dictionary_file.readlines() self.dictionary_file.close() try: self.dictionary = marisa_trie.Trie([x.strip().decode('utf-8') for x in self.dictionary]) except: self.dictionary = marisa_trie.Trie( [x.strip() for x in self.dictionary]) self.stemmer = Stemmer() self.inflector = inflector.Inflector(lang='ml') self.soundex = Soundex() self.syllabalizer = Syllabalizer() self.ngrammer = Ngram()
def has_player_name_fuzzy(current, edu): "if the EDU has a word that sounds like a player name" tokens = edu.tokens soundex = lambda w: Soundex().soundex(w) return has_one_of_words(current.players, tokens, norm=soundex)
class BaseMalayalam: """ Malayalam Spell Checker class. """ Suggestion = namedtuple('Suggestion', 'word sound lev jac weight tag_list') def __init__(self): """ Initialize necessary resources. """ self.dictionary_file = open(os.path.join( os.path.dirname(__file__), 'data/ml_rootwords.txt')) self.dictionary = self.dictionary_file.readlines() self.dictionary_file.close() try: self.dictionary = marisa_trie.Trie([x.strip().decode('utf-8') for x in self.dictionary]) except: self.dictionary = marisa_trie.Trie( [x.strip() for x in self.dictionary]) self.stemmer = Stemmer() self.inflector = inflector.Inflector(lang='ml') self.soundex = Soundex() self.syllabalizer = Syllabalizer() self.ngrammer = Ngram() def check(self, word): """ Returns if a word is spelled correctly or not. """ root_word = self.stemmer.stem(word)[word]['stem'] if root_word in self.dictionary: return True else: return False def get_best_intermediate(self, word, input_word, intermediate_words, original_tag_list): """ Return the best intermediate form from those generated during stemming. Best intermediate term is the one for which maximum similarity is found. It is used to handle incorrect words getting unnecessarily stemmed as they are not present in dictionary. """ lev = [] sound = [] jac = [] weight = [] word_tags_map = {} selected_word = input_word highest_weight = 0 for intr_counter in range(len(intermediate_words)): intermediate_word = intermediate_words[intr_counter] lev_tmp, sound_tmp, jac_tmp, weight_tmp = self.compare( intermediate_word, word) lev.append(lev_tmp) sound.append(sound_tmp) jac.append(jac_tmp) weight.append(weight_tmp) word_tags_map[intermediate_word] = original_tag_list[:intr_counter] if len(weight) > 0: highest_weight = max(weight) position = weight.index(highest_weight) selected_word = intermediate_words[position] lev = lev[position] return word_tags_map, highest_weight, selected_word def get_unique(self, list_of_items): result = [] for item in list_of_items: if item not in result: result.append(item) return result def suggest(self, input_word, n=5): """ Returns n suggestions that is similar to word. """ stemmer_result = self.stemmer.stem(input_word)[input_word] input_word = stemmer_result['stem'] tag_list = stemmer_result['inflection'] first_char = input_word[0] if first_char == _characters[0]: prev_char = first_char else: prev_char_pos = _characters.index(first_char) - 1 prev_char = _characters[prev_char_pos] if first_char == _characters[-1]: next_char = first_char else: next_char_pos = _characters.index(first_char) + 1 next_char = _characters[next_char_pos] possible_words = self.dictionary.keys(first_char) +\ self.dictionary.keys(next_char) +\ self.dictionary.keys(prev_char) final = [] intermediate_words = [] original_tag_list = tag_list intermediate_words.append(input_word) for tag_counter in range(len(tag_list)): new_word = self.inflector.inflect( input_word, tag_list[-tag_counter - 1:]) intermediate_words.insert(0, new_word) for word in possible_words: lev, sound, jac, weight1 = self.compare(input_word, word) word_tags_map, highest_weight, selected_word =\ self.get_best_intermediate( word, input_word, intermediate_words, original_tag_list) tag_list = original_tag_list if highest_weight >= weight1 and selected_word != input_word: tag_list = word_tags_map[selected_word] weight = max(weight1, highest_weight) suggestion_item = Malayalam.Suggestion( word, sound, lev, jac, weight, tag_list) if weight > 50: final.append(suggestion_item) sorted_list = sorted(final, key=attrgetter('weight'), reverse=True)[:n] final_list = [] for item in sorted_list: word = item.word tag_list = item.tag_list try: inflected_form = self.inflector.inflect(word, tag_list) final_list.append(inflected_form) except: final_list.append(word) continue return self.get_unique(final_list) def levenshtein_distance(self, tokens1, tokens2): """ Takes two lists containing tokens of one word each and returns the levenshtein distance between them. """ if len(tokens1) < len(tokens2): return self.levenshtein_distance(tokens2, tokens1) if len(tokens2) == 0: return len(tokens1) previous_row = range(len(tokens2) + 1) for i, c1 in enumerate(tokens1): current_row = [i + 1] for j, c2 in enumerate(tokens2): # j+1 instead of j since previous_row and current_row are one # character longer insertions = previous_row[j + 1] + 1 deletions = current_row[j] + 1 # than tokens2 substitutions = previous_row[j] + (c1 != c2) current_row.append(min(insertions, deletions, substitutions)) previous_row = current_row return previous_row[-1] def compare(self, word1, word2): """ Returns the similarity measure between two words. """ soundex_comparison = self.soundex.compare(word1, word2) tokens1 = self.syllabalizer.syllabify_ml(word1) tokens2 = self.syllabalizer.syllabify_ml(word2) levenshtein_distance = self.levenshtein_distance(tokens1, tokens2) ngram1 = self.ngrammer.letterNgram(word1, 1) ngram2 = self.ngrammer.letterNgram(word2, 1) total = ngram1 + ngram2 union = [] for counter in range(len(total)): item = total[counter] if item not in union: union.append(item) final = [x for x in ngram1 if x in ngram2] +\ [x for x in ngram2 if x in ngram1] intersection = [] for counter in range(len(final)): item = final[counter] if item not in intersection: intersection.append(item) jaccards = float(len(intersection)) / float(len(union)) if soundex_comparison == 1 or soundex_comparison == 0: weight = 100 elif levenshtein_distance <= 2 and jaccards > 0.5: weight = 75 + (1.5 * jaccards) elif levenshtein_distance < 5 and jaccards > 0.5: weight = 65 + (3 * jaccards) else: weight = 0 return levenshtein_distance, soundex_comparison, jaccards, weight def check_and_generate(self, word): """ Receives a word as input, checks if it is a valid word and returns the suggestions if it is not. Returns 0 along with suggestions if an incorrect word. Returns 1 along with blank list of suggestions if word in dictionary. Returns 2 along with blank list of suggestions if word is unique. """ status = self.check(word) if status: return {'status': 1, 'suggestions': []} else: suggestions = self.suggest(word) if suggestions: return {'status': 0, 'suggestions': suggestions} else: # If there were no suggestions, it means the word was not # similar to any of the existing root words. So, that was not a # mistake, but an intended insertion. Hence, it is deemed as a # valid word return {'status': 2, 'suggestions': []}
phonemes2 = np.array([ipa[c] for c in pad2]) features = {'word 1 encoding': phonemes1, 'word 2 encoding': phonemes2} return features #%% Open some things if __name__ == '__main__': TRAIN_PATH = '../data/cognet_train.csv' TEST_PATH = '../data/cognet_test.csv' DEV_PATH = '../data/cognet_dev.csv' DATA_PATH = '../data/extracted_features.npy' SUPPORTED_LANGS_PATH = '../data/cognet_supported_langs.tsv' IPA_ENCODING_PATH = '../data/ipa_encodings.pickle' v = DictVectorizer(sparse=False) soundex = Soundex() epitran_dict = create_epitran_dict() with open(IPA_ENCODING_PATH, 'rb') as f: ipa = pickle.load(f) ipa = defaultdict(lambda: np.array([0.] * 24), ipa) #%% FEATURE EXTRACTION if __name__ == '__main__': print('Reading training data...') train_data = pd.read_csv(TRAIN_PATH) print('Extracting features...') x_train = v.fit_transform([ extract_features(str(lang1), str(word1), str(lang2), str(word2))\ for lang1, word1, lang2, word2 in\ zip(train_data['lang 1'], train_data['translit 1'], train_data['lang 2'], train_data['translit 2']) ])
# -*- coding: utf-8 -*- """ Created on Sun Jun 18 00:04:21 2017 @author: Milton """ from foneticaBR import foneticaBR from buscabr import buscaBR from metaphoneBR import metaphoneBR # Soundex - Instalar no Python as bibliotecas soundex e silpa_common from soundex import Soundex chaveRoberto = foneticaBR() chavebr = buscaBR() chavemeta = metaphoneBR() chavesoundex = Soundex() texto = 'JOSSEPH' print(chaveRoberto.chavefonetica(texto)) print(chavebr.chaveBR(texto, False)) print(chavebr.chaveBR(texto, True)) print(chavemeta.chaveMetaphoneBR(texto)) print(chavesoundex.soundex(texto))
def sndx(s): return Soundex().soundex(stemmer(s, args.stem))
from soundex import Soundex from collections import defaultdict from wordfreq import word_frequency soundex = Soundex().soundex sound_words = defaultdict(set) with open('eff_short_wordlist_1.txt','r') as fh: for line in fh: word = line.split()[1] sound = soundex(word) if len(sound) > 1: # and sound not in ('i245', 't651'): sound_words[sound].add(word) for word_set in sound_words.values(): if len(word_set) > 1: word_list = [ (word_frequency(word, 'en'), word) for word in word_set ] word_list.sort() print(word_list[-1][-1]) else: print(list(word_set)[0])
'ben': SCHEMES[BENGALI], 'guj': SCHEMES[GUJARATI], 'hin': SCHEMES[DEVANAGARI], 'kan': SCHEMES[KANNADA], 'mal': SCHEMES[MALAYALAM], 'mar': SCHEMES[DEVANAGARI], "ori": SCHEMES[ORIYA], 'pun': SCHEMES[GURMUKHI], 'tam': SCHEMES[TAMIL], 'tel': SCHEMES[TELUGU], 'urd': SCHEMES[DEVANAGARI] } if lang in scheme_dict: src_scheme = scheme_dict[lang] scheme_map = SchemeMap(src_scheme, SCHEMES[HK]) instance = Soundex() findings = {} for i, line in enumerate(inp_bible): curr_line_id = 23146 + i if line == "" or line == "\n": continue for index, name in enumerate(names_reference): lids = ast.literal_eval(name[lid_col]) for col in col_references: romans = name[col] if romans == "": continue print(".", end="")