示例#1
0
    def compute_lfp_spectra_and_cfs(self, lfp, sample_rate, lags,
                                    psd_window_size, psd_increment,
                                    window_fraction, noise_db):
        """ Compute the power spectrums and cross coherencies of the multi-electrode LFP.

        :param lfp: A matrix of LFPs in the shape (ntrials, nelectrodes, ntime)
        :param sample_rate: Sample rate of the LFP in Hz
        :param lags: Integer-valued time lags for computing cross coherencies
        :param psd_window_size: Window size in seconds used for computing the power spectra.
        :param psd_increment: Increment in seconds used for computing the power spectra.

        :return:
        """

        ntrials, nelectrodes, nt = lfp.shape

        # pre-compute the trial-averaged LFP
        trial_avg_lfp = np.zeros([nelectrodes, nt])
        for n in range(nelectrodes):
            trial_avg_lfp[n, :] = lfp[:, n, :].mean(axis=0)

        # pre-compute the mean-subtracted LFP
        mean_sub_lfp = np.zeros_like(lfp)
        for n in range(nelectrodes):
            for k in range(ntrials):
                i = np.ones([ntrials], dtype='bool')
                i[k] = False
                lfp_jn_mean = lfp[i, n, :].mean(axis=0)
                mean_sub_lfp[k, n, :] = lfp[k, n, :] - lfp_jn_mean

        # compute the power spectra and covariance functions three different ways
        trial_avg_psds = list()
        mean_sub_psds = list()
        full_psds = list()
        onewin_psds = list()
        for n in range(nelectrodes):

            # compute the PSD of the trial-averaged LFP
            freq1, trial_avg_psd, trial_avg_phase = self.compute_psd(
                trial_avg_lfp[n, :], sample_rate, psd_window_size,
                psd_increment)
            trial_avg_psds.append(trial_avg_psd)

            if self.freqs is None:
                self.freqs = freq1

            # compute the trial-averaged PSD of mean-subtracted LFP
            per_trial_psds = list()
            for k in range(ntrials):
                freq1, mean_sub_psd, mean_sub_phase = self.compute_psd(
                    mean_sub_lfp[k, n, :], sample_rate, psd_window_size,
                    psd_increment)
                per_trial_psds.append(mean_sub_psd)

            per_trial_psds = np.array(per_trial_psds)
            mean_sub_psds.append(per_trial_psds.mean(axis=0))

            # compute the "full" psd, per trial then averaged across trial
            per_trial_psds = list()
            for k in range(ntrials):
                freq1, trial_psd, trial_phase = self.compute_psd(
                    lfp[k, n, :], sample_rate, psd_window_size, psd_increment)
                per_trial_psds.append(trial_psd)

            per_trial_psds = np.array(per_trial_psds)
            full_psds.append(per_trial_psds.mean(axis=0))

            # compute the "full" psd, but with only the first 65ms of the LFP, so there is one window
            per_trial_onewin_psds = list()
            onewin_len = psd_window_size + (2 / sample_rate)
            onewin_nlen = int(onewin_len * sample_rate)
            for k in range(ntrials):
                freq1, onewin_trial_psd, onewin_trial_phase = self.compute_psd(
                    lfp[k, n, :onewin_nlen], sample_rate, psd_window_size,
                    psd_increment)
                per_trial_onewin_psds.append(onewin_trial_psd)
            per_trial_onewin_psds = np.array(per_trial_onewin_psds)
            onewin_psds.append(per_trial_onewin_psds.mean(axis=0))

        # compute the cross coherencies three different ways
        cross_electrodes = list()
        trial_avg_cfs = list()
        mean_sub_cfs = list()
        full_cfs = list()
        for n1 in range(nelectrodes):
            for n2 in range(n1):
                cross_electrodes.append((n1, n2))

                # compute coherency of trial-averaged LFP
                trial_avg_cf = coherency(trial_avg_lfp[n1, :],
                                         trial_avg_lfp[n2, :],
                                         lags,
                                         window_fraction=window_fraction,
                                         noise_floor_db=noise_db)
                trial_avg_cfs.append(trial_avg_cf)

                # compute average mean-subtracted coherency
                trial_cfs = list()
                for k in range(ntrials):
                    cf = coherency(mean_sub_lfp[k, n1, :],
                                   mean_sub_lfp[k, n2, :],
                                   lags,
                                   window_fraction=window_fraction,
                                   noise_floor_db=noise_db)
                    trial_cfs.append(cf)
                trial_cfs = np.array(trial_cfs)
                mean_sub_cfs.append(trial_cfs.mean(axis=0))

                # compute full coherency for each trial, then average across trials
                trial_cfs = list()
                for k in range(ntrials):
                    cf = coherency(lfp[k, n1, :],
                                   lfp[k, n2, :],
                                   lags,
                                   window_fraction=window_fraction,
                                   noise_floor_db=noise_db)
                    trial_cfs.append(cf)
                trial_cfs = np.array(trial_cfs)
                full_cfs.append(trial_cfs.mean(axis=0))

        return {
            'trial_avg_psds': trial_avg_psds,
            'mean_sub_psds': mean_sub_psds,
            'full_psds': full_psds,
            'onewin_psds': onewin_psds,
            'trial_avg_cfs': trial_avg_cfs,
            'mean_sub_cfs': mean_sub_cfs,
            'full_cfs': full_cfs,
            'cross_electrodes': cross_electrodes
        }
示例#2
0
def compute_spectra_and_coherence_single_electrode(lfp1,
                                                   lfp2,
                                                   sample_rate,
                                                   e1,
                                                   e2,
                                                   window_length=0.060,
                                                   increment=None,
                                                   log=True,
                                                   window_fraction=0.60,
                                                   noise_floor_db=25,
                                                   lags=np.arange(-20, 21, 1),
                                                   psd_stats=None):
    """

    :param lfp1: An array of shape (ntrials, nt)
    :param lfp2: An array of shape (ntrials, nt)
    :return:
    """

    # compute the mean (locked) spectra
    lfp1_mean = lfp1.mean(axis=0)
    lfp2_mean = lfp2.mean(axis=0)

    if increment is None:
        increment = 2.0 / sample_rate

    pfreq, psd1, ps_var, phase = power_spectrum_jn(lfp1_mean, sample_rate,
                                                   window_length, increment)
    pfreq, psd2, ps_var, phase = power_spectrum_jn(lfp2_mean, sample_rate,
                                                   window_length, increment)

    if log:
        log_transform(psd1)
        log_transform(psd2)

    c12 = coherency(lfp1_mean,
                    lfp2_mean,
                    lags,
                    window_fraction=window_fraction,
                    noise_floor_db=noise_floor_db)

    # compute the nonlocked spectra coherence
    c12_pertrial = list()
    ntrials, nt = lfp1.shape
    psd1_ms_all = list()
    psd2_ms_all = list()
    for k in range(ntrials):
        i = np.ones([ntrials], dtype='bool')
        i[k] = False
        lfp1_jn_mean = lfp1[i, :].mean(axis=0)
        lfp2_jn_mean = lfp2[i, :].mean(axis=0)

        lfp1_ms = lfp1[k, :] - lfp1_jn_mean
        lfp2_ms = lfp2[k, :] - lfp2_jn_mean

        pfreq, psd1_ms, ps_var_ms, phase_ms = power_spectrum_jn(
            lfp1_ms, sample_rate, window_length, increment)
        pfreq, psd2_ms, ps_var_ms, phase_ms = power_spectrum_jn(
            lfp2_ms, sample_rate, window_length, increment)
        if log:
            log_transform(psd1_ms)
            log_transform(psd2_ms)

        psd1_ms_all.append(psd1_ms)
        psd2_ms_all.append(psd2_ms)

        c12_ms = coherency(lfp1_ms,
                           lfp2_ms,
                           lags,
                           window_fraction=window_fraction,
                           noise_floor_db=noise_floor_db)
        c12_pertrial.append(c12_ms)

    psd1_ms_all = np.array(psd1_ms_all)
    psd2_ms_all = np.array(psd2_ms_all)
    psd1_ms = psd1_ms_all.mean(axis=0)
    psd2_ms = psd2_ms_all.mean(axis=0)

    if psd_stats is not None:
        psd_mean1, psd_std1 = psd_stats[e1]
        psd_mean2, psd_std2 = psd_stats[e2]
        psd1 -= psd_mean1
        psd1 /= psd_std1
        psd2 -= psd_mean2
        psd2 /= psd_std2

        psd1_ms -= psd_mean1
        psd1_ms /= psd_std1
        psd2_ms -= psd_mean2
        psd2_ms /= psd_std2

    c12_pertrial = np.array(c12_pertrial)
    c12_nonlocked = c12_pertrial.mean(axis=0)

    # compute the coherence per trial then take the average
    c12_totals = list()
    for k in range(ntrials):
        c12 = coherency(lfp1[k, :],
                        lfp2[k, :],
                        lags,
                        window_fraction=window_fraction,
                        noise_floor_db=noise_floor_db)
        c12_totals.append(c12)

    c12_totals = np.array(c12_totals)
    c12_total = c12_totals.mean(axis=0)

    return pfreq, psd1, psd2, psd1_ms, psd2_ms, c12, c12_nonlocked, c12_total
示例#3
0
    def test_cross_psd(self):

        np.random.seed(1234567)
        sr = 1000.0
        dur = 1.0
        nt = int(dur * sr)
        t = np.arange(nt) / sr

        # create a simple signal
        freqs = list()
        freqs.extend(np.arange(8, 12))
        freqs.extend(np.arange(60, 71))
        freqs.extend(np.arange(130, 151))

        s1 = np.zeros([nt])
        for f in freqs:
            s1 += np.sin(2 * np.pi * f * t)
        s1 /= s1.max()

        # create a noise corrupted, bandpassed filtered version of s1
        noise = np.random.randn(nt) * 1e-1
        # s2 = convolve1d(s1, filt, mode='mirror') + noise
        s2 = bandpass_filter(s1, sample_rate=sr, low_freq=40., high_freq=90.)
        s2 /= s2.max()
        s2 += noise

        # compute the signal's power spectrums
        welch_freq1, welch_psd1 = welch(s1, fs=sr)
        welch_freq2, welch_psd2 = welch(s2, fs=sr)

        welch_psd_max = max(welch_psd1.max(), welch_psd2.max())
        welch_psd1 /= welch_psd_max
        welch_psd2 /= welch_psd_max

        # compute the auto-correlation functions
        lags = np.arange(-200, 201)
        acf1 = correlation_function(s1, s1, lags, normalize=True)
        acf2 = correlation_function(s2, s2, lags, normalize=True)

        # compute the cross correlation functions
        cf12 = correlation_function(s1, s2, lags, normalize=True)
        coh12 = coherency(s1,
                          s2,
                          lags,
                          window_fraction=0.75,
                          noise_floor_db=100.)

        # do an FFT shift to the lags and the window, otherwise the FFT of the ACFs is not equal to the power
        # spectrum for some numerical reason
        shift_lags = fftshift(lags)
        if len(lags) % 2 == 1:
            # shift zero from end of shift_lags to beginning
            shift_lags = np.roll(shift_lags, 1)
        acf1_shift = correlation_function(s1, s1, shift_lags)
        acf2_shift = correlation_function(s2, s2, shift_lags)

        # compute the power spectra from the auto-spectra
        ps1 = fft(acf1_shift)
        ps1_freq = fftfreq(len(acf1), d=1.0 / sr)
        fi = ps1_freq > 0
        ps1 = ps1[fi]
        assert np.sum(
            np.abs(ps1.imag) > 1e-8
        ) == 0, "Nonzero imaginary part for fft(acf1) (%d)" % np.sum(
            np.abs(ps1.imag) > 1e-8)
        ps1_auto = np.abs(ps1.real)
        ps1_auto_freq = ps1_freq[fi]

        ps2 = fft(acf2_shift)
        ps2_freq = fftfreq(len(acf2), d=1.0 / sr)
        fi = ps2_freq > 0
        ps2 = ps2[fi]
        assert np.sum(np.abs(ps2.imag) > 1e-8
                      ) == 0, "Nonzero imaginary part for fft(acf2)"
        ps2_auto = np.abs(ps2.real)
        ps2_auto_freq = ps2_freq[fi]

        assert np.sum(ps1_auto < 0) == 0, "negatives in ps1_auto"
        assert np.sum(ps2_auto < 0) == 0, "negatives in ps2_auto"

        # compute the cross spectral density from the correlation function
        cf12_shift = correlation_function(s1, s2, shift_lags, normalize=True)
        psd12 = fft(cf12_shift)
        psd12_freq = fftfreq(len(cf12_shift), d=1.0 / sr)
        fi = psd12_freq > 0

        psd12 = np.abs(psd12[fi])
        psd12_freq = psd12_freq[fi]

        # compute the cross spectral density from the power spectra
        psd12_welch = welch_psd1 * welch_psd2
        psd12_welch /= psd12_welch.max()

        # compute the coherence from the cross spectral density
        cfreq,coherence,coherence_var,phase_coherence,phase_coherence_var,coh12_freqspace,coh12_freqspace_t = \
            coherence_jn(s1, s2, sample_rate=sr, window_length=0.100, increment=0.050, return_coherency=True)

        coh12_freqspace /= np.abs(coh12_freqspace).max()

        # weight the coherence by one minus the normalized standard deviation
        coherence_std = np.sqrt(coherence_var)
        # cweight = coherence_std / coherence_std.sum()
        # coherence_weighted = (1.0 - cweight)*coherence
        coherence_weighted = coherence - coherence_std
        coherence_weighted[coherence_weighted < 0] = 0

        # compute the coherence from the fft of the coherency
        coherence2 = fft(fftshift(coh12))
        coherence2_freq = fftfreq(len(coherence2), d=1.0 / sr)
        fi = coherence2_freq > 0
        coherence2 = np.abs(coherence2[fi])
        coherence2_freq = coherence2_freq[fi]
        """
        plt.figure()
        ax = plt.subplot(2, 1, 1)
        plt.plot(ps1_auto_freq, ps1_auto*ps2_auto, 'c-', linewidth=2.0, alpha=0.75)
        plt.plot(psd12_freq, psd12, 'g-', linewidth=2.0, alpha=0.9)
        plt.plot(ps1_auto_freq, ps1_auto, 'k-', linewidth=2.0, alpha=0.75)
        plt.plot(ps2_auto_freq, ps2_auto, 'r-', linewidth=2.0, alpha=0.75)
        plt.axis('tight')
        plt.legend(['denom', '12', '1', '2'])

        ax = plt.subplot(2, 1, 2)
        plt.plot(psd12_freq, coherence, 'b-')
        plt.axis('tight')
        plt.show()
        """

        # normalize the cross-spectral density and power spectra
        psd12 /= psd12.max()
        ps_auto_max = max(ps1_auto.max(), ps2_auto.max())
        ps1_auto /= ps_auto_max
        ps2_auto /= ps_auto_max

        # make some plots
        plt.figure()

        nrows = 2
        ncols = 2

        # plot the signals
        ax = plt.subplot(nrows, ncols, 1)
        plt.plot(t, s1, 'k-', linewidth=2.0)
        plt.plot(t, s2, 'r-', alpha=0.75, linewidth=2.0)
        plt.xlabel('Time (s)')
        plt.ylabel('Signal')
        plt.axis('tight')

        # plot the spectra
        ax = plt.subplot(nrows, ncols, 2)
        plt.plot(welch_freq1, welch_psd1, 'k-', linewidth=2.0, alpha=0.85)
        plt.plot(ps1_auto_freq, ps1_auto, 'k--', linewidth=2.0, alpha=0.85)
        plt.plot(welch_freq2, welch_psd2, 'r-', alpha=0.75, linewidth=2.0)
        plt.plot(ps2_auto_freq, ps2_auto, 'r--', linewidth=2.0, alpha=0.75)
        plt.axis('tight')

        plt.xlabel('Frequency (Hz)')
        plt.ylabel('Power')

        # plot the correlation functions
        ax = plt.subplot(nrows, ncols, 3)
        plt.axhline(0, c='k')
        plt.plot(lags, acf1, 'k-', linewidth=2.0)
        plt.plot(lags, acf2, 'r-', alpha=0.75, linewidth=2.0)
        plt.plot(lags, cf12, 'g-', alpha=0.75, linewidth=2.0)
        plt.plot(lags, coh12, 'b-', linewidth=2.0, alpha=0.75)
        plt.plot(coh12_freqspace_t * 1e3,
                 coh12_freqspace,
                 'm-',
                 linewidth=1.0,
                 alpha=0.95)
        plt.xlabel('Lag (ms)')
        plt.ylabel('Correlation Function')
        plt.axis('tight')
        plt.ylim(-0.5, 1.0)
        handles = custom_legend(['k', 'r', 'g', 'b', 'c'],
                                ['acf1', 'acf2', 'cf12', 'coh12', 'coh12_f'])
        plt.legend(handles=handles)

        # plot the cross spectral density
        ax = plt.subplot(nrows, ncols, 4)
        handles = custom_legend(['g', 'k', 'b'],
                                ['CSD', 'Coherence', 'Weighted'])
        plt.axhline(0, c='k')
        plt.axhline(1, c='k')
        plt.plot(psd12_freq, psd12, 'g-', linewidth=3.0)
        plt.errorbar(cfreq,
                     coherence,
                     yerr=np.sqrt(coherence_var),
                     fmt='k-',
                     ecolor='r',
                     linewidth=3.0,
                     elinewidth=5.0,
                     alpha=0.8)
        plt.plot(cfreq, coherence_weighted, 'b-', linewidth=3.0, alpha=0.75)
        plt.xlabel('Frequency (Hz)')
        plt.ylabel('Cross-spectral Density/Coherence')
        plt.legend(handles=handles)
        """
        plt.figure()
        plt.axhline(0, c='k')
        plt.plot(lags, cf12, 'k-', alpha=1, linewidth=2.0)
        plt.plot(lags, coh12, 'b-', linewidth=3.0, alpha=0.75)
        plt.plot(coh12_freqspace_t*1e3, coh12_freqspace, 'r-', linewidth=2.0, alpha=0.95)
        plt.xlabel('Lag (ms)')
        plt.ylabel('Correlation Function')
        plt.axis('tight')
        plt.ylim(-0.5, 1.0)
        handles = custom_legend(['k', 'b', 'r'], ['cf12', 'coh12', 'coh12_f'])
        plt.legend(handles=handles)
        """

        plt.show()
示例#4
0
def compute_spectra_and_coherence_multi_electrode_single_trial(
        lfps,
        sample_rate,
        electrode_indices,
        electrode_order,
        window_length=0.060,
        increment=None,
        log=True,
        window_fraction=0.60,
        noise_floor_db=25,
        lags=np.arange(-20, 21, 1),
        psd_stats=None):
    """
    :param lfps: an array of shape (ntrials, nelectrodes, nt)
    :return:
    """

    if increment is None:
        increment = 2.0 / sample_rate

    nelectrodes, nt = lfps.shape
    freqs = get_freqs(sample_rate, window_length, increment)
    lags_ms = get_lags_ms(sample_rate, lags)

    spectra = np.zeros([nelectrodes, len(freqs)])
    cross_mat = np.zeros([nelectrodes, nelectrodes, len(lags_ms)])

    for k in range(nelectrodes):

        _e1 = electrode_indices[k]
        i1 = electrode_order.index(_e1)

        lfp1 = lfps[k, :]

        freqs, psd1, ps_var, phase = power_spectrum_jn(lfp1, sample_rate,
                                                       window_length,
                                                       increment)
        if log:
            log_transform(psd1)

        if psd_stats is not None:
            psd_mean, psd_std = psd_stats[_e1]
            """
            plt.figure()
            plt.subplot(2, 2, 1)
            plt.plot(freqs, psd1, 'k-')
            plt.title('PSD (%d)' % _e1)
            plt.axis('tight')

            plt.subplot(2, 2, 3)
            plt.plot(freqs, psd_mean, 'g-')
            plt.title('Mean')
            plt.axis('tight')

            plt.subplot(2, 2, 4)
            plt.plot(freqs, psd_std, 'c-')
            plt.title('STD')
            plt.axis('tight')

            plt.subplot(2, 2, 2)
            psd1_z = deepcopy(psd1)
            psd1_z -= psd_mean
            psd1_z /= psd_std
            plt.plot(freqs, psd1_z, 'r-')
            plt.title('Zscored')
            plt.axis('tight')
            """
            psd1 -= psd_mean
            psd1 /= psd_std

        spectra[i1, :] = psd1

        for j in range(k):
            _e2 = electrode_indices[j]
            i2 = electrode_order.index(_e2)

            lfp2 = lfps[j, :]

            cf = coherency(lfp1,
                           lfp2,
                           lags,
                           window_fraction=window_fraction,
                           noise_floor_db=noise_floor_db)
            """
            freqs,c12,c_var_amp,c_phase,c_phase_var,coherency,coherency_t = coherence_jn(lfp1, lfp2, sample_rate,
                                                                                         window_length, increment,
                                                                                         return_coherency=True)
            """

            cross_mat[i1, i2] = cf
            cross_mat[i2, i1] = cf[::-1]

    return spectra, cross_mat