示例#1
0
    def bulge2arc(self, Ps, Pe, bulge):
        """
        bulge2arc()
        """
        c = (1 / bulge - bulge) / 2

        # Berechnung des Mittelpunkts (Formel von Mickes!)
        # Calculation of the center (Micke's formula)
        O = Point((Ps.x + Pe.x - (Pe.y - Ps.y) * c) / 2,
                  (Ps.y + Pe.y + (Pe.x - Ps.x) * c) / 2)

        # Radius = Distance between the centre and Ps
        r = O.distance(Ps)
        # Kontrolle ob beide gleich sind (passt ...)
        # Check if they are equal (fits ...)
        # r=O.distance(Pe)

        # Unterscheidung f�r den �ffnungswinkel.
        # Distinction for the opening angle. ???
        if bulge > 0:
            return ArcGeo(Ps=Ps, Pe=Pe, O=O, r=r)
        else:
            arc = ArcGeo(Ps=Pe, Pe=Ps, O=O, r=r)
            arc.reverse()
            return arc
示例#2
0
    def Read(self, caller):
        """
        Read()
        """

        # Assign short name
        lp = caller.line_pairs
        e = lp.index_code(0, caller.start + 1)

        # Assign layer
        s = lp.index_code(8, caller.start + 1)
        self.Layer_Nr = caller.Get_Layer_Nr(lp.line_pair[s].value)

        # X Value
        s = lp.index_code(10, s + 1)
        x0 = float(lp.line_pair[s].value)

        # Y Value
        s = lp.index_code(20, s + 1)
        y0 = float(lp.line_pair[s].value)

        # Radius
        s = lp.index_code(40, s + 1)
        r = float(lp.line_pair[s].value)

        # Searching for an extrusion direction
        s_nxt_xt = lp.index_code(230, s + 1, e)
        # If there is a extrusion direction given flip around x-Axis
        if s_nxt_xt is not None:
            extrusion_dir = float(lp.line_pair[s_nxt_xt].value)
            logger.debug(self.tr('Found extrusion direction: %s') % extrusion_dir)
            if extrusion_dir == -1:
                x0 = -x0

        O = Point(x0, y0)

        # Calculate the start and end values of the circle without clipping
        s_ang = -3 * pi / 4
        m_ang = s_ang - pi
        e_ang = -3 * pi / 4

        # Calculate the start and end values of the arcs
        Ps = Point(cos(s_ang) * r, sin(s_ang) * r) + O
        Pm = Point(cos(m_ang) * r, sin(m_ang) * r) + O
        Pe = Point(cos(e_ang) * r, sin(e_ang) * r) + O

        # Annexes to ArcGeo class for geometry
        self.geo.append(ArcGeo(Ps=Ps, Pe=Pm, O=O, r=r, s_ang=s_ang, e_ang=m_ang, direction=-1))
        self.geo.append(ArcGeo(Ps=Pm, Pe=Pe, O=O, r=r, s_ang=m_ang, e_ang=e_ang, direction=-1))

        # Length corresponds to the length (circumference?) of the circle
        self.length = self.geo[-1].length+self.geo[-2].length

        # New starting value for the next geometry
        caller.start = s
示例#3
0
    def fit_triac_by_inc_biarc(self, arc, eps):
        """
        fit_triac_by_inc_biarc()
        """

        # Errechnen von tb
        V0 = (arc[0].O - arc[0].Ps).unit_vector()
        V2 = (arc[2].O - arc[2].Pe).unit_vector()

        # Errechnen der Hilfgr�ssen
        t0 = (arc[2].r - arc[0].r)
        D = (arc[2].O - arc[0].O)
        X0 = (t0 * t0) - (D * D)
        X1 = 2 * (D * V0 - t0)
        Y0 = 2 * (t0 - D * V2)
        Y1 = 2 * (V0 * V2 - 1)

        # Errechnen von tb
        tb = (pow((arc[1].r - arc[0].r + eps), 2) - ((arc[1].O - arc[0].O) * (arc[1].O - arc[0].O))) / \
            (2 * (arc[1].r - arc[0].r + eps + (arc[1].O - arc[0].O) * V0))

        # Errechnen von tc
        tc = (pow(t0, 2) - (D * D)) / (2 * (t0 - D * V0))

        # Auswahl von t
        t = min([tb, tc])

        # Errechnen von u
        u = (X0 + X1 * t) / (Y0 + Y1 * t)

        # Errechnen der neuen Arcs
        Oa = arc[0].O + t * V0
        ra = arc[0].r + t
        Ob = arc[2].O - u * V2
        rb = arc[2].r - u
        Vn = (Oa - Ob).unit_vector()
        Pn = Oa + ra * Vn

        Arc0 = ArcGeo(Ps=arc[0].Ps, Pe=Pn, O=Oa, r=ra, direction=arc[0].ext)
        Arc1 = ArcGeo(Ps=Pn, Pe=arc[2].Pe, O=Ob, r=rb, direction=arc[2].ext)

        #        print('\nAlte')
        #        print arc[0]
        #        print arc[1]
        #        print arc[2]
        #        print("tb: %0.3f; tc: %0.3f; t: %0.3f; u: %0.3f" %(tb,tc,t,u))
        #        print 'Neue'
        #        print Arc0
        #        print Arc1

        return Arc0, Arc1
示例#4
0
    def fit_triac_by_dec_biarc(self, arc, eps):
        """
        fit_triac_by_dec_biarc()
        """

        V0 = (arc[2].O - arc[2].Pe).unit_vector()
        V2 = (arc[0].O - arc[0].Ps).unit_vector()

        # Errechnen der Hilfgr�ssen
        t0 = (arc[0].r - arc[2].r)
        D = (arc[0].O - arc[2].O)
        X0 = (t0 * t0) - (D * D)
        X1 = 2 * (D * V0 - t0)
        Y0 = 2 * (t0 - D * V2)
        Y1 = 2 * (V0 * V2 - 1)

        # Errechnen von tb
        tb = (pow((arc[1].r - arc[2].r + eps), 2) - ((arc[1].O - arc[2].O) * (arc[1].O - arc[2].O))) / \
             (2 * (arc[1].r - arc[2].r + eps + (arc[1].O - arc[2].O) * V0))

        # Errechnen von tc
        tc = (pow(t0, 2) - (D * D)) / (2 * (t0 - D * V0))

        # Auswahl von t
        t = min([tb, tc])

        # Errechnen von u
        u = (X0 + X1 * t) / (Y0 + Y1 * t)

        # Errechnen der neuen Arcs
        Oa = arc[0].O - u * V2
        ra = arc[0].r - u
        Ob = arc[2].O + t * V0
        rb = arc[2].r + t
        Vn = (Ob - Oa).unit_vector()
        Pn = Ob + rb * Vn

        Arc0 = ArcGeo(Ps=arc[0].Ps, Pe=Pn, O=Oa, r=ra, \
                      s_ang=Oa.norm_angle(arc[0].Ps), e_ang=Oa.norm_angle(Pn),
                      direction=arc[0].ext)
        Arc1 = ArcGeo(Ps=Pn, Pe=arc[2].Pe, O=Ob, r=rb, \
                      s_ang=Ob.norm_angle(Pn), e_ang=Ob.norm_angle(arc[2].Pe),
                      direction=arc[2].ext)

        return Arc0, Arc1
示例#5
0
    def bulge2arc(self, Ps, Pe, bulge):
        """
        bulge2arc()
        """
        c = (1 / bulge - bulge) / 2

        # Calculate the centre point (Micke's formula!)
        O = Point((Ps.x + Pe.x - (Pe.y - Ps.y) * c) / 2,
                  (Ps.y + Pe.y + (Pe.x - Ps.x) * c) / 2)

        # Radius = Distance between the centre and Ps
        r = O.distance(Ps)

        # Check if they are equal (fits ...)
        # r=O.distance(Pe)

        # Unterscheidung f�r den �ffnungswinkel.
        # Distinction for the opening angle. ???
        if bulge > 0:
            return ArcGeo(Ps=Ps, Pe=Pe, O=O, r=r)
        else:
            arc = ArcGeo(Ps=Pe, Pe=Ps, O=O, r=r)
            arc.reverse()
            return arc
示例#6
0
    def Read(self, caller):
        """
        Read()
        """
        # Assign short name
        lp = caller.line_pairs
        e = lp.index_code(0, caller.start + 1)

        # Assign layer
        s = lp.index_code(8, caller.start + 1)
        self.Layer_Nr = caller.Get_Layer_Nr(lp.line_pair[s].value)

        # X Value
        s = lp.index_code(10, s + 1)
        x0 = float(lp.line_pair[s].value)

        # Y Value
        s = lp.index_code(20, s + 1)
        y0 = float(lp.line_pair[s].value)
        O = Point(x0, y0)

        # Radius
        s = lp.index_code(40, s + 1)
        r = float(lp.line_pair[s].value)

        # Start angle
        s = lp.index_code(50, s + 1)
        s_ang = radians(float(lp.line_pair[s].value))

        # End angle
        s = lp.index_code(51, s + 1)
        e_ang = radians(float(lp.line_pair[s].value))

        # Searching for an extrusion direction
        s_nxt_xt = lp.index_code(230, s + 1, e)
        # If there is a extrusion direction given flip around x-Axis
        if s_nxt_xt is not None:
            extrusion_dir = float(lp.line_pair[s_nxt_xt].value)
            logger.debug(
                self.tr('Found extrusion direction: %s') % extrusion_dir)
            if extrusion_dir == -1:
                x0 = -x0
                s_ang = s_ang + pi
                e_ang = e_ang + pi

        # Calculate the start and end points of the arcs
        Ps = Point(cos(s_ang) * r, sin(s_ang) * r) + O
        Pe = Point(cos(e_ang) * r, sin(e_ang) * r) + O

        # Anh�ngen der ArcGeo Klasse f�r die Geometrie
        # Annexes to ArcGeo class for geometry
        self.geo.append(
            ArcGeo(Ps=Ps,
                   Pe=Pe,
                   O=O,
                   r=r,
                   s_ang=s_ang,
                   e_ang=e_ang,
                   direction=1))

        # L�nge entspricht der L�nge des Kreises
        # Length is the length (circumference?) of the circle
        self.length = self.geo[-1].length

        #        logger.debug(self.geo[-1])

        # Neuen Startwerd f�r die n�chste Geometrie zur�ckgeben
        # New starting value for the next geometry
        caller.start = s
示例#7
0
    def make_start_moves(self):
        """
        This function called to create the start move. It will
        be generated based on the given values for start and angle.
        """
        self.geos = Geos([])

        if g.config.machine_type == 'drag_knife':
            self.make_swivelknife_move()
            return

        # Get the start rad. and the length of the line segment at begin.
        start_rad = self.shape.parentLayer.start_radius

        # Get tool radius based on tool diameter.
        tool_rad = self.shape.parentLayer.getToolRadius()

        # Calculate the starting point with and without compensation.
        start = self.start
        angle = self.angle

        if self.shape.cut_cor == 40:
            self.append(RapidPos(start))

        elif self.shape.cut_cor != 40 and not g.config.vars.Cutter_Compensation[
                "done_by_machine"]:

            toolwidth = self.shape.parentLayer.getToolRadius()
            offtype = "in" if self.shape.cut_cor == 42 else "out"
            offshape = offShapeClass(parent=self.shape,
                                     offset=toolwidth,
                                     offtype=offtype)

            if len(offshape.rawoff) > 0:
                start, angle = offshape.rawoff[0].get_start_end_points(
                    True, True)

                self.append(RapidPos(start))
                self.geos += offshape.rawoff

        # Cutting Compensation Left
        elif self.shape.cut_cor == 41:
            # Center of the Starting Radius.
            Oein = start.get_arc_point(angle + pi / 2, start_rad + tool_rad)
            # Start Point of the Radius
            Ps_ein = Oein.get_arc_point(angle + pi, start_rad + tool_rad)
            # Start Point of the straight line segment at begin.
            Pg_ein = Ps_ein.get_arc_point(angle + pi / 2, start_rad)

            # Get the dive point for the starting contour and append it.
            start_ein = Pg_ein.get_arc_point(angle, tool_rad)
            self.append(RapidPos(start_ein))

            # generate the Start Line and append it including the compensation.
            start_line = LineGeo(start_ein, Ps_ein)
            self.append(start_line)

            # generate the start rad. and append it.
            start_rad = ArcGeo(Ps=Ps_ein,
                               Pe=start,
                               O=Oein,
                               r=start_rad + tool_rad,
                               direction=1)
            self.append(start_rad)

        # Cutting Compensation Right
        elif self.shape.cut_cor == 42:
            # Center of the Starting Radius.
            Oein = start.get_arc_point(angle - pi / 2, start_rad + tool_rad)
            # Start Point of the Radius
            Ps_ein = Oein.get_arc_point(angle + pi, start_rad + tool_rad)
            # Start Point of the straight line segment at begin.
            Pg_ein = Ps_ein.get_arc_point(angle - pi / 2, start_rad)

            # Get the dive point for the starting contour and append it.
            start_ein = Pg_ein.get_arc_point(angle, tool_rad)
            self.append(RapidPos(start_ein))

            # generate the Start Line and append it including the compensation.
            start_line = LineGeo(start_ein, Ps_ein)
            self.append(start_line)

            # generate the start rad. and append it.
            start_rad = ArcGeo(Ps=Ps_ein,
                               Pe=start,
                               O=Oein,
                               r=start_rad + tool_rad,
                               direction=0)
            self.append(start_rad)
示例#8
0
    def make_swivelknife_move(self):
        """
        Set these variables for your tool and material
        @param offset: knife tip distance from tool centerline. The radius of the
        tool is used for this.
        """
        offset = self.shape.parentLayer.getToolRadius()
        drag_angle = self.shape.drag_angle

        startnorm = offset * Point(
            1, 0)  # TODO make knife direction a config setting
        prvend, prvnorm = Point(), Point()
        first = True

        for geo in self.shape.geos.abs_iter():
            if isinstance(geo, LineGeo):
                geo_b = deepcopy(geo)
                if first:
                    first = False
                    prvend = geo_b.Ps + startnorm
                    prvnorm = startnorm
                norm = offset * (geo_b.Pe - geo_b.Ps).unit_vector()
                geo_b.Ps += norm
                geo_b.Pe += norm
                if not prvnorm == norm:
                    direction = prvnorm.to3D().cross_product(norm.to3D()).z
                    swivel = ArcGeo(Ps=prvend,
                                    Pe=geo_b.Ps,
                                    r=offset,
                                    direction=direction)
                    swivel.drag = drag_angle < abs(swivel.ext)
                    self.append(swivel)
                self.append(geo_b)

                prvend = geo_b.Pe
                prvnorm = norm
            elif isinstance(geo, ArcGeo):
                geo_b = deepcopy(geo)
                if first:
                    first = False
                    prvend = geo_b.Ps + startnorm
                    prvnorm = startnorm
                if geo_b.ext > 0.0:
                    norma = offset * Point(cos(geo_b.s_ang + pi / 2),
                                           sin(geo_b.s_ang + pi / 2))
                    norme = Point(cos(geo_b.e_ang + pi / 2),
                                  sin(geo_b.e_ang + pi / 2))
                else:
                    norma = offset * Point(cos(geo_b.s_ang - pi / 2),
                                           sin(geo_b.s_ang - pi / 2))
                    norme = Point(cos(geo_b.e_ang - pi / 2),
                                  sin(geo_b.e_ang - pi / 2))
                geo_b.Ps += norma
                if norme.x > 0:
                    geo_b.Pe = Point(
                        geo_b.Pe.x + offset / (sqrt(1 +
                                                    (norme.y / norme.x)**2)),
                        geo_b.Pe.y + (offset * norme.y / norme.x) /
                        (sqrt(1 + (norme.y / norme.x)**2)))
                elif norme.x == 0:
                    geo_b.Pe = Point(geo_b.Pe.x, geo_b.Pe.y)
                else:
                    geo_b.Pe = Point(
                        geo_b.Pe.x - offset / (sqrt(1 +
                                                    (norme.y / norme.x)**2)),
                        geo_b.Pe.y - (offset * norme.y / norme.x) /
                        (sqrt(1 + (norme.y / norme.x)**2)))
                if prvnorm != norma:
                    direction = prvnorm.to3D().cross_product(norma.to3D()).z
                    swivel = ArcGeo(Ps=prvend,
                                    Pe=geo_b.Ps,
                                    r=offset,
                                    direction=direction)
                    swivel.drag = drag_angle < abs(swivel.ext)
                    self.append(swivel)
                prvend = geo_b.Pe
                prvnorm = offset * norme
                if -pi < geo_b.ext < pi:
                    self.append(
                        ArcGeo(Ps=geo_b.Ps,
                               Pe=geo_b.Pe,
                               r=sqrt(geo_b.r**2 + offset**2),
                               direction=geo_b.ext))
                else:
                    geo_b = ArcGeo(Ps=geo_b.Ps,
                                   Pe=geo_b.Pe,
                                   r=sqrt(geo_b.r**2 + offset**2),
                                   direction=-geo_b.ext)
                    geo_b.ext = -geo_b.ext
                    self.append(geo_b)
            # TODO support different geos, or disable them in the GUI
            # else:
            #     self.append(copy(geo))
        if not prvnorm == startnorm:
            direction = prvnorm.to3D().cross_product(startnorm.to3D()).z
            self.append(
                ArcGeo(Ps=prvend,
                       Pe=prvend - prvnorm + startnorm,
                       r=offset,
                       direction=direction))

        self.geos.insert(0, RapidPos(self.geos.abs_el(0).Ps))
        self.geos[0].make_abs_geo()
示例#9
0
    def __init__(self, Ps=Point(), tan_a=0.0, Pb=Point, tan_b=0.0, min_r=1e-6):
        """
        Std. method to initialise the class.
        @param Ps: Start Point for the Biarc
        @param tan_a: Tangent of the Start Point
        @param Pb: End Point of the Biarc
        @param tan_b: Tangent of the End Point
        @param min_r: The minimum radius of a arc section.
        """
        min_len = 1e-12  # Min Abstand f�r doppelten Punkt / Minimum clearance for double point
        min_alpha = 1e-4  # Winkel ab welchem Gerade angenommen wird inr rad / Angle for which it is assumed straight inr rad
        max_r = 5e3  # Max Radius ab welchem Gerade angenommen wird (5m) / Max radius is assumed from which line (5m)
        min_r = min_r  # Min Radius ab welchem nichts gemacht wird / Min radius beyond which nothing is done

        self.Ps = Ps
        self.tan_a = tan_a
        self.Pb = Pb
        self.tan_b = tan_b
        self.l = 0.0
        self.shape = None
        self.geos = []
        self.k = 0.0

        # Errechnen der Winkel, L�nge und Shape
        # Calculate the angle, length and shape
        norm_angle, self.l = self.calc_normal(self.Ps, self.Pb)

        alpha, beta, self.theta, self.shape = self.calc_diff_angles(
            norm_angle, self.tan_a, self.tan_b, min_alpha)

        if self.l < min_len:
            self.shape = "Zero"

        elif self.shape == "LineGeo":
            # Erstellen der Geometrie
            # Create the geometry
            self.geos.append(LineGeo(self.Ps, self.Pb))
        else:
            # Berechnen der Radien, Mittelpunkte, Zwichenpunkt
            # Calculate the radii, midpoints Zwichenpunkt
            r1, r2 = self.calc_r1_r2(self.l, alpha, beta, self.theta)

            if abs(r1) > max_r or abs(r2) > max_r:
                # Erstellen der Geometrie
                # Create the geometry
                self.shape = "LineGeo"
                self.geos.append(LineGeo(self.Ps, self.Pb))
                return

#             elif abs(r1) < min_r or abs(r2) < min_r:
#                 self.shape = "Zero"
#                 return

            O1, O2, k = self.calc_O1_O2_k(r1, r2, self.tan_a, self.theta)

            # Berechnen der Start und End- Angles f�r das drucken
            # Calculate the start and end angles for the print
            s_ang1, e_ang1 = self.calc_s_e_ang(self.Ps, O1, k)
            s_ang2, e_ang2 = self.calc_s_e_ang(k, O2, self.Pb)

            # Berechnen der Richtung und der Extend
            # Calculate the direction and extent
            dir_ang1 = (tan_a - s_ang1) % (-2 * pi)
            dir_ang1 -= ceil(dir_ang1 / pi) * (2 * pi)

            dir_ang2 = (tan_b - e_ang2) % (-2 * pi)
            dir_ang2 -= ceil(dir_ang2 / pi) * (2 * pi)

            # Erstellen der Geometrien
            # Create the geometries
            self.geos.append(
                ArcGeo(Ps=self.Ps,
                       Pe=k,
                       O=O1,
                       r=r1,
                       s_ang=s_ang1,
                       e_ang=e_ang1,
                       direction=dir_ang1))
            self.geos.append(
                ArcGeo(Ps=k,
                       Pe=self.Pb,
                       O=O2,
                       r=r2,
                       s_ang=s_ang2,
                       e_ang=e_ang2,
                       direction=dir_ang2))