示例#1
0
    def test_get_sequence(self):

        sequence = ReceptorSequence(amino_acid_sequence="CAS",
                                    nucleotide_sequence="TGTGCTTCC")

        EnvironmentSettings.set_sequence_type(SequenceType.AMINO_ACID)

        self.assertEqual(sequence.get_sequence(), "CAS")
示例#2
0
    def _build_new_sequence(self, sequence: ReceptorSequence, position, signal: dict) -> ReceptorSequence:

        gap_length = signal["motif_instance"].gap
        if "/" in signal["motif_instance"].instance:
            motif_left, motif_right = signal["motif_instance"].instance.split("/")
        else:
            motif_left = signal["motif_instance"].instance
            motif_right = ""

        gap_start = position+len(motif_left)
        gap_end = gap_start+gap_length
        part1 = sequence.get_sequence()[:position]
        part2 = sequence.get_sequence()[gap_start:gap_end]
        part3 = sequence.get_sequence()[gap_end+len(motif_right):]

        new_sequence_string = part1 + motif_left + part2 + motif_right + part3

        annotation = SequenceAnnotation()
        implant = ImplantAnnotation(signal_id=signal["signal_id"],
                                    motif_id=signal["motif_id"],
                                    motif_instance=signal["motif_instance"],
                                    position=position)
        annotation.add_implant(implant)

        new_sequence = ReceptorSequence()
        new_sequence.set_annotation(annotation)
        new_sequence.set_metadata(copy.deepcopy(sequence.metadata))
        new_sequence.set_sequence(new_sequence_string, EnvironmentSettings.get_sequence_type())

        return new_sequence
示例#3
0
    def create_model(self, dataset: RepertoireDataset, k: int, vector_size: int, batch_size: int, model_path: str):

        model = Word2Vec(size=vector_size, min_count=1, window=5)  # creates an empty model
        all_kmers = KmerHelper.create_all_kmers(k=k, alphabet=EnvironmentSettings.get_sequence_alphabet())
        all_kmers = [[kmer] for kmer in all_kmers]
        model.build_vocab(all_kmers)

        for kmer in all_kmers:
            sentences = KmerHelper.create_kmers_within_HD(kmer=kmer[0],
                                                          alphabet=EnvironmentSettings.get_sequence_alphabet(),
                                                          distance=1)
            model.train(sentences=sentences, total_words=len(all_kmers), epochs=model.epochs)

        model.save(model_path)

        return model
示例#4
0
    def drop_illegal_character_sequences(dataframe: pd.DataFrame, import_illegal_characters: bool) -> pd.DataFrame:
        if not import_illegal_characters:
            sequence_type = EnvironmentSettings.get_sequence_type()
            sequence_name = sequence_type.name.lower().replace("_", " ")

            legal_alphabet = EnvironmentSettings.get_sequence_alphabet(sequence_type)
            if sequence_type == SequenceType.AMINO_ACID:
                legal_alphabet.append(Constants.STOP_CODON)

            is_illegal_seq = [ImportHelper.is_illegal_sequence(sequence, legal_alphabet) for
                              sequence in dataframe[sequence_type.value]]
            n_illegal = sum(is_illegal_seq)

            if n_illegal > 0:
                dataframe.drop(dataframe.loc[is_illegal_seq].index, inplace=True)
                warnings.warn(
                    f"{ImportHelper.__name__}: {n_illegal} sequences were removed from the dataset because their {sequence_name} sequence contained illegal characters. ")
        return dataframe
示例#5
0
 def get_sequence(self):
     """
     :return: receptor_sequence (nucleotide/amino acid) that corresponds to preset
     receptor_sequence type from EnvironmentSettings class
     """
     if EnvironmentSettings.get_sequence_type() == SequenceType.AMINO_ACID:
         return self.amino_acid_sequence
     else:
         return self.nucleotide_sequence
    def generate_receptor_dataset(receptor_count: int, chain_1_length_probabilities: dict, chain_2_length_probabilities: dict, labels: dict,
                                  path: str):
        """
        Creates receptor_count receptors where the length of sequences in each chain is sampled independently for each sequence from
        chain_n_length_probabilities distribution. The labels are also randomly assigned to receptors from the distribution given in
        labels. In this case, labels are multi-class, so each receptor will get one class from each label. This means that negative
        classes for the labels should be included as well in the specification. chain 1 and 2 in this case refer to alpha and beta
        chain of a T-cell receptor.

        An example of input parameters is given below:

        receptor_count: 100 # generate 100 TRABReceptors
        chain_1_length_probabilities:
            14: 0.8 # 80% of all generated sequences for all receptors (for chain 1) will have length 14
            15: 0.2 # 20% of all generated sequences across all receptors (for chain 1) will have length 15
        chain_2_length_probabilities:
            14: 0.8 # 80% of all generated sequences for all receptors (for chain 2) will have length 14
            15: 0.2 # 20% of all generated sequences across all receptors (for chain 2) will have length 15
        labels:
            epitope1: # label name
                True: 0.5 # 50% of the receptors will have class True
                False: 0.5 # 50% of the receptors will have class False
            epitope2: # next label with classes that will be assigned to receptors independently of the previous label or other parameters
                1: 0.3 # 30% of the generated receptors will have class 1
                0: 0.7 # 70% of the generated receptors will have class 0
        """
        RandomDatasetGenerator._check_receptor_dataset_generation_params(receptor_count, chain_1_length_probabilities,
                                                                         chain_2_length_probabilities, labels, path)

        alphabet = EnvironmentSettings.get_sequence_alphabet()
        PathBuilder.build(path)

        get_random_sequence = lambda proba, chain, id: ReceptorSequence("".join(random.choices(alphabet, k=random.choices(list(proba.keys()),
                                                                                                                      proba.values())[0])),
                                                                    metadata=SequenceMetadata(count=1,
                                                                                              v_subgroup=chain+"V1",
                                                                                              v_gene=chain+"V1-1",
                                                                                              v_allele=chain+"V1-1*01",
                                                                                              j_subgroup=chain + "J1",
                                                                                              j_gene=chain + "J1-1",
                                                                                              j_allele=chain + "J1-1*01",
                                                                                              chain=chain,
                                                                                              cell_id=id))

        receptors = [TCABReceptor(alpha=get_random_sequence(chain_1_length_probabilities, "TRA", i),
                                  beta=get_random_sequence(chain_2_length_probabilities, "TRB", i),
                                  metadata={**{label: random.choices(list(label_dict.keys()), label_dict.values(), k=1)[0]
                                               for label, label_dict in labels.items()}, **{"subject": f"subj_{i + 1}"}})
                     for i in range(receptor_count)]

        filename = f"{path if path[-1] == '/' else path + '/'}batch01.pickle"

        with open(filename, "wb") as file:
            pickle.dump(receptors, file)

        return ReceptorDataset(params={label: list(label_dict.keys()) for label, label_dict in labels.items()},
                               filenames=[filename], file_size=receptor_count)
示例#7
0
    def __init__(self,
                 kernel_count: int = None,
                 kernel_size=None,
                 positional_channels: int = None,
                 sequence_type: str = None,
                 device=None,
                 number_of_threads: int = None,
                 random_seed: int = None,
                 learning_rate: float = None,
                 iteration_count: int = None,
                 l1_weight_decay: float = None,
                 l2_weight_decay: float = None,
                 batch_size: int = None,
                 training_percentage: float = None,
                 evaluate_at: int = None,
                 background_probabilities=None,
                 result_path=None):

        super().__init__()
        self.kernel_count = kernel_count
        self.kernel_size = kernel_size
        self.positional_channels = positional_channels
        self.number_of_threads = number_of_threads
        self.random_seed = random_seed
        self.device = device
        self.l1_weight_decay = l1_weight_decay
        self.l2_weight_decay = l2_weight_decay
        self.learning_rate = learning_rate
        self.iteration_count = iteration_count
        self.batch_size = batch_size
        self.evaluate_at = evaluate_at
        self.training_percentage = training_percentage
        self.sequence_type = SequenceType[sequence_type.upper()]
        self.background_probabilities = background_probabilities if background_probabilities is not None \
            else np.array([1. / len(EnvironmentSettings.get_sequence_alphabet(self.sequence_type))
                           for i in range(len(EnvironmentSettings.get_sequence_alphabet(self.sequence_type)))])
        self.CNN = None
        self.label_name = None
        self.class_mapping = None
        self.result_path = result_path
        self.chain_names = None
        self.feature_names = None
示例#8
0
 def add(params: tuple,
         caching_object,
         object_type: CacheObjectType = CacheObjectType.OTHER,
         cache_type=None):
     PathBuilder.build(EnvironmentSettings.get_cache_path(cache_type))
     h = CacheHandler.generate_cache_key(params)
     with open(
             CacheHandler._build_filename(cache_key=h,
                                          object_type=object_type,
                                          cache_type=cache_type),
             "wb") as file:
         dill.dump(caching_object, file, protocol=pickle.HIGHEST_PROTOCOL)
    def _encode_repertoire(self, repertoire, params: EncoderParams):
        sequences = repertoire.get_attribute(
            EnvironmentSettings.get_sequence_type().value)

        onehot_encoded = self._encode_sequence_list(
            sequences,
            pad_n_sequences=self.max_rep_len,
            pad_sequence_len=self.max_seq_len)
        example_id = repertoire.identifier
        labels = self._get_repertoire_labels(
            repertoire, params) if params.encode_labels else None

        return onehot_encoded, example_id, labels
示例#10
0
    def _set_max_dims(self, dataset):
        max_rep_len = 0
        max_seq_len = 0

        for repertoire in dataset.repertoires:
            sequences = repertoire.get_attribute(
                EnvironmentSettings.get_sequence_type().value)
            max_rep_len = max(len(sequences), max_rep_len)
            max_seq_len = max(max([len(seq) for seq in sequences]),
                              max_seq_len)

        self.max_rep_len = max_rep_len
        self.max_seq_len = max_seq_len
示例#11
0
    def _generate(self) -> ReportResult:
        PathBuilder.build(self.result_path)
        report_result = ReportResult()
        sequence_alphabet = EnvironmentSettings.get_sequence_alphabet(self.method.sequence_type)
        for kernel_name in self.method.CNN.conv_chain_1 + self.method.CNN.conv_chain_2:
            figure_outputs, table_outputs = self._plot_kernels(kernel_name, sequence_alphabet)
            report_result.output_figures.extend(figure_outputs)
            report_result.output_tables.extend(table_outputs)

        figure_output, table_output = self._plot_fc_layer()
        report_result.output_figures.append(figure_output)
        report_result.output_tables.append(table_output)

        return report_result
示例#12
0
    def test_get(self):
        params = (("k1", 1), ("k2", 2))
        obj = "object_example"
        object_type = CacheObjectType.OTHER

        h = hashlib.sha256(str(params).encode('utf-8')).hexdigest()
        filename = "{}{}/{}.pickle".format(
            EnvironmentSettings.get_cache_path(),
            CacheObjectType.OTHER.name.lower(), h)
        with open(filename, "wb") as file:
            pickle.dump(obj, file)

        obj2 = CacheHandler.get(params, object_type)
        self.assertEqual(obj, obj2)
        os.remove(filename)
示例#13
0
    def test_receptor_flattened(self):
        path = EnvironmentSettings.root_path + "test/tmp/onehot_recep_flat/"

        PathBuilder.build(path)

        dataset = self.construct_test_flatten_dataset(path)

        encoder = OneHotEncoder.build_object(
            dataset, **{
                "use_positional_info": False,
                "distance_to_seq_middle": None,
                "flatten": True
            })

        encoded_data = encoder.encode(
            dataset,
            EncoderParams(result_path=path,
                          label_config=LabelConfiguration([
                              Label(name="l1",
                                    values=[1, 0],
                                    positive_class="1")
                          ]),
                          pool_size=1,
                          learn_model=True,
                          model={},
                          filename="dataset.pkl"))

        self.assertTrue(isinstance(encoded_data, ReceptorDataset))

        onehot_a = [1.0] + [0.0] * 19
        onehot_t = [0.0] * 16 + [1.0] + [0] * 3

        self.assertListEqual(
            list(encoded_data.encoded_data.examples[0]),
            onehot_a + onehot_a + onehot_a + onehot_t + onehot_t + onehot_t +
            onehot_a + onehot_t + onehot_a + onehot_t + onehot_a + onehot_t)
        self.assertListEqual(list(encoded_data.encoded_data.examples[1]),
                             onehot_a * 12)
        self.assertListEqual(list(encoded_data.encoded_data.examples[2]),
                             onehot_a * 12)

        self.assertListEqual(list(encoded_data.encoded_data.feature_names), [
            f"{chain}_{pos}_{char}" for chain in ("alpha", "beta")
            for pos in range(6)
            for char in EnvironmentSettings.get_sequence_alphabet()
        ])

        shutil.rmtree(path)
示例#14
0
    def generate_repertoire_dataset(repertoire_count: int, sequence_count_probabilities: dict, sequence_length_probabilities: dict,
                                    labels: dict, path: str) -> RepertoireDataset:
        """
        Creates repertoire_count repertoires where the number of sequences per repertoire is sampled from the probability distribution given
        in sequence_count_probabilities. The length of sequences is sampled independently for each sequence from
        sequence_length_probabilities distribution. The labels are also randomly assigned to repertoires from the distribution given in
        labels. In this case, labels are multi-class, so each repertoire will get at one class from each label. This means that negative
        classes for the labels should be included as well in the specification.

        An example of input parameters is given below:
        repertoire_count: 100 # generate 100 repertoires
        sequence_count_probabilities:
            100: 0.5 # half of the generated repertoires will have 100 sequences
            200: 0.5 # the other half of the generated repertoires will have 200 sequences
        sequence_length_distribution:
            14: 0.8 # 80% of all generated sequences for all repertoires will have length 14
            15: 0.2 # 20% of all generated sequences across all repertoires will have length 15
        labels:
            cmv: # label name
                True: 0.5 # 50% of the repertoires will have class True
                False: 0.5 # 50% of the repertoires will have class False
            coeliac: # next label with classes that will be assigned to repertoires independently of the previous label or any other parameter
                1: 0.3 # 30% of the generated repertoires will have class 1
                0: 0.7 # 70% of the generated repertoires will have class 0
        """
        RandomDatasetGenerator._check_rep_dataset_generation_params(repertoire_count, sequence_count_probabilities, sequence_length_probabilities,
                                                                    labels, path)

        alphabet = EnvironmentSettings.get_sequence_alphabet()
        PathBuilder.build(path)

        sequences = [["".join(random.choices(alphabet,
                                             k=random.choices(list(sequence_length_probabilities.keys()), sequence_length_probabilities.values())[0]))
                      for seq_count in range(random.choices(list(sequence_count_probabilities.keys()), sequence_count_probabilities.values())[0])]
                     for rep in range(repertoire_count)]

        if labels is not None:
            processed_labels = {label: random.choices(list(labels[label].keys()), labels[label].values(), k=repertoire_count) for label in labels}
            dataset_params = {label: list(labels[label].keys()) for label in labels}
        else:
            processed_labels = None
            dataset_params = None

        repertoires, metadata = RepertoireBuilder.build(sequences=sequences, path=path, labels=processed_labels)
        dataset = RepertoireDataset(params=dataset_params, repertoires=repertoires, metadata_file=metadata)

        return dataset
示例#15
0
    def __init__(self, hamming_distance_probabilities: dict = None, min_gap: int = 0, max_gap: int = 0,
                 alphabet_weights: dict = None, position_weights: dict = None):
        if hamming_distance_probabilities is not None:
            hamming_distance_probabilities = {key: float(value) for key, value in hamming_distance_probabilities.items()}
            assert all(isinstance(key, int) for key in hamming_distance_probabilities.keys()) \
                   and all(isinstance(val, float) for val in hamming_distance_probabilities.values()) \
                   and 0.99 <= sum(hamming_distance_probabilities.values()) <= 1, \
                "GappedKmerInstantiation: for each possible Hamming distance a probability between 0 and 1 has to be assigned " \
                "so that the probabilities for all distance possibilities sum to 1."

        self._hamming_distance_probabilities = hamming_distance_probabilities
        self.position_weights = position_weights
        # if weights are not given for each letter of the alphabet, distribute the remaining probability
        # equally among letters
        self.alphabet_weights = self.set_default_weights(alphabet_weights, EnvironmentSettings.get_sequence_alphabet())
        self._min_gap = min_gap
        self._max_gap = max_gap
示例#16
0
    def test_repertoire_flattened(self):
        path = EnvironmentSettings.root_path + "test/tmp/onehot_recep_flat/"

        PathBuilder.build(path)

        dataset, lc = self._construct_test_repertoiredataset(path,
                                                             positional=False)

        encoder = OneHotEncoder.build_object(
            dataset, **{
                "use_positional_info": False,
                "distance_to_seq_middle": None,
                "flatten": True
            })

        encoded_data = encoder.encode(
            dataset,
            EncoderParams(result_path=path,
                          label_config=lc,
                          pool_size=1,
                          learn_model=True,
                          model={},
                          filename="dataset.pkl"))

        self.assertTrue(isinstance(encoded_data, RepertoireDataset))

        onehot_a = [1.0] + [0.0] * 19
        onehot_t = [0.0] * 16 + [1.0] + [0] * 3
        onehot_empty = [0] * 20

        self.assertListEqual(
            list(encoded_data.encoded_data.examples[0]), onehot_a + onehot_a +
            onehot_a + onehot_a + onehot_a + onehot_t + onehot_a +
            onehot_empty + onehot_a + onehot_t + onehot_a + onehot_empty)
        self.assertListEqual(
            list(encoded_data.encoded_data.examples[1]),
            onehot_a + onehot_t + onehot_a + onehot_empty + onehot_t +
            onehot_a + onehot_a + onehot_empty + onehot_empty + onehot_empty +
            onehot_empty + onehot_empty)

        self.assertListEqual(list(encoded_data.encoded_data.feature_names), [
            f"{seq}_{pos}_{char}" for seq in range(3) for pos in range(4)
            for char in EnvironmentSettings.get_sequence_alphabet()
        ])

        shutil.rmtree(path)
示例#17
0
    def _substitute_letters(self, position_weights, alphabet_weights, allowed_positions: list, instance: list):

        if self._hamming_distance_probabilities:
            substitution_count = random.choices(list(self._hamming_distance_probabilities.keys()),
                                                list(self._hamming_distance_probabilities.values()), k=1)[0]
            allowed_position_weights = {key: value for key, value in position_weights.items() if key in allowed_positions}
            position_probabilities = self._prepare_probabilities(allowed_position_weights)
            positions = list(np.random.choice(allowed_positions, size=substitution_count, p=position_probabilities))

            while substitution_count > 0:
                if position_weights[positions[substitution_count - 1]] > 0:  # if the position is allowed to be changed
                    position = positions[substitution_count - 1]
                    alphabet_probabilities = self._prepare_probabilities(alphabet_weights)
                    instance[position] = np.random.choice(EnvironmentSettings.get_sequence_alphabet(), size=1,
                                                          p=alphabet_probabilities)[0]
                substitution_count -= 1

        return instance
示例#18
0
    def __init__(self, kernel_count: int, kernel_size,
                 positional_channels: int, sequence_type: SequenceType,
                 background_probabilities, chain_names):
        super(PyTorchReceptorCNN, self).__init__()
        self.background_probabilities = background_probabilities
        self.threshold = 0.1
        self.pseudocount = 0.05
        self.in_channels = len(
            EnvironmentSettings.get_sequence_alphabet(
                sequence_type)) + positional_channels
        self.positional_channels = positional_channels
        self.max_information_gain = self.get_max_information_gain()
        self.chain_names = chain_names

        self.conv_chain_1 = [f"chain_1_kernel_{size}" for size in kernel_size]
        self.conv_chain_2 = [f"chain_2_kernel_{size}" for size in kernel_size]

        for size in kernel_size:
            # chain 1
            setattr(
                self, f"chain_1_kernel_{size}",
                nn.Conv1d(in_channels=self.in_channels,
                          out_channels=kernel_count,
                          kernel_size=size,
                          bias=True))
            getattr(self, f"chain_1_kernel_{size}").weight.data. \
                normal_(0.0, np.sqrt(1 / np.prod(getattr(self, f"chain_1_kernel_{size}").weight.shape)))

            # chain 2
            setattr(
                self, f"chain_2_kernel_{size}",
                nn.Conv1d(in_channels=self.in_channels,
                          out_channels=kernel_count,
                          kernel_size=size,
                          bias=True))
            getattr(self, f"chain_2_kernel_{size}").weight.data. \
                normal_(0.0, np.sqrt(1 / np.prod(getattr(self, f"chain_2_kernel_{size}").weight.shape)))

        self.fully_connected = nn.Linear(in_features=kernel_count *
                                         len(kernel_size) * 2,
                                         out_features=1,
                                         bias=True)
        self.fully_connected.weight.data.normal_(
            0.0, np.sqrt(1 / np.prod(self.fully_connected.weight.shape)))
示例#19
0
    def create_model(self, dataset: RepertoireDataset, k: int,
                     vector_size: int, batch_size: int, model_path: str):
        model = Word2Vec(size=vector_size, min_count=1,
                         window=5)  # creates an empty model
        all_kmers = KmerHelper.create_all_kmers(
            k=k, alphabet=EnvironmentSettings.get_sequence_alphabet())
        all_kmers = [[kmer] for kmer in all_kmers]
        model.build_vocab(all_kmers)

        for repertoire in dataset.get_data(batch_size=batch_size):
            sentences = KmerHelper.create_sentences_from_repertoire(
                repertoire=repertoire, k=k)
            model.train(sentences=sentences,
                        total_words=len(all_kmers),
                        epochs=15)

        model.save(model_path)

        return model
示例#20
0
 def add_by_key(cache_key: str,
                caching_object,
                object_type: CacheObjectType = CacheObjectType.OTHER,
                cache_type=None):
     PathBuilder.build(EnvironmentSettings.get_cache_path(cache_type))
     filename = CacheHandler._build_filename(cache_key=cache_key,
                                             object_type=object_type,
                                             cache_type=cache_type)
     try:
         with open(filename, "wb") as file:
             dill.dump(caching_object,
                       file,
                       protocol=pickle.HIGHEST_PROTOCOL)
     except AttributeError:
         os.remove(filename)
         logging.warning(
             f"CacheHandler: could not cache object of class {type(caching_object).__name__} with key {cache_key}. "
             f"Object: {caching_object}\n"
             f"Next time this object is needed, it will be recomputed which will take more time but should not influence results."
         )
示例#21
0
 def clear_cache(self):
     shutil.rmtree(self._cache_path, ignore_errors=True)
     EnvironmentSettings.reset_cache_path()
     del os.environ[Constants.CACHE_TYPE]
示例#22
0
 def set_cache(self):
     os.environ[Constants.CACHE_TYPE] = CacheType.PRODUCTION.value
     EnvironmentSettings.set_cache_path(self._cache_path)
示例#23
0
 def get_file_path(cache_type=None):
     file_path = EnvironmentSettings.get_cache_path(cache_type) + "files/"
     PathBuilder.build(file_path)
     return file_path