示例#1
0
class Trading:
    """A helper for making stock trades."""
    def __init__(self, logs_to_cloud):
        self.logs = Logs(name="trading", to_cloud=logs_to_cloud)
        self.alpaca = AlpacaConnector(logs_to_cloud)
        self.trail_percent = float(getenv('TRAIL_PERCENT'))
        self.limit_percent = float(
            getenv('LIMIT_PERCENT')
        )  # The fraction of the stock price at which to set order limits.
        self.cash_hold = float(
            getenv('CASH_HOLD')
        )  # The amount of cash in dollars to hold from being spent.
        self.max_position = float(
            getenv('MAX_POSITION'))  # Max position to take for each trade

    def make_trades(self, companies):
        """Executes trades for the specified companies based on sentiment."""

        # Determine whether the markets are open.
        is_market_open = self.alpaca.get_market_status()
        if not is_market_open:
            self.logs.error("Not trading while market is closed")
            return False

        # Filter for any strategies resulting in trades.
        actionable_strategies = []
        for company in companies:
            strategy = self.get_strategy(company, is_market_open)
            if strategy["action"] != "hold":
                actionable_strategies.append(strategy)
            else:
                self.logs.warn("Dropping strategy: %s" % strategy)

        if not actionable_strategies:
            self.logs.warn("No actionable strategies for trading.")
            return False

        # Calculate the budget per strategy.
        balance = self.alpaca.get_balance()
        budget = self.get_budget(balance, len(actionable_strategies))

        if not budget:
            self.logs.warn("No budget for trading: %s %s %s" %
                           (budget, balance, actionable_strategies))
            return False

        self.logs.debug("Using budget: %s x $%s" %
                        (len(actionable_strategies), budget))

        # Handle trades for each strategy.
        success = True
        for strategy in actionable_strategies:
            ticker = strategy["ticker"]
            action = strategy["action"]

            # Execute the strategy. ##BEEP
            if action == "bull":
                self.logs.info("Bull: %s %s" % (ticker, budget))
                success = success and self.bull(ticker, budget)
            elif action == "bear":
                self.logs.info("Bear: %s %s" % (ticker, budget))
                success = success and self.bear(ticker, budget)
            else:
                self.logs.error("Unknown strategy: %s" % strategy)

        return success

    def get_strategy(self, company, is_market_open):
        """Determines the strategy for trading a company based on sentiment and
        market status.
        """

        ticker = company["ticker"]
        sentiment = company["sentiment"]

        strategy = {}
        strategy["name"] = company["name"]
        if "root" in company:
            strategy["root"] = company["root"]
        strategy["sentiment"] = company["sentiment"]
        strategy["ticker"] = ticker
        if "exchange" in company:
            strategy["exchange"] = company["exchange"]

        # Don't do anything with blacklisted stocks.
        if ticker in TICKER_BLACKLIST:
            strategy["action"] = "hold"
            strategy["reason"] = "blacklist"
            return strategy

        # TODO: Figure out some strategy for the markets closed case.
        # Don't trade unless the markets are open or are about to open.
        if not is_market_open:
            strategy["action"] = "hold"
            strategy["reason"] = "market closed"
            return strategy

        # Can't trade without sentiment.
        if sentiment == 0:
            strategy["action"] = "hold"
            strategy["reason"] = "neutral sentiment"
            return strategy

        # Determine bull or bear based on sentiment direction.
        if sentiment > 0:
            strategy["action"] = "bull"
            strategy["reason"] = "positive sentiment"
            return strategy
        else:  # sentiment < 0
            strategy[
                "action"] = "hold"  #typically "bear", but i dont want to short anything
            strategy["reason"] = "negative sentiment"
            return strategy

    def get_budget(self, balance, num_strategies):
        """Calculates the budget per company based on the available balance."""

        if num_strategies <= 0:
            self.logs.warn("No budget without strategies.")
            return 0.0
        return round(
            min(self.max_position,
                max(0.0, balance - self.cash_hold) / num_strategies), 2)

    def get_buy_limit(self, price):
        """Calculates the limit price for a buy (or cover) order."""

        return round((1 + self.limit_percent / 100) * price, 2)

    def get_sell_limit(self, price):
        """Calculates the limit price for a sell (or short) order."""

        return round((1 - self.limit_percent / 100) * price, 2)

    def get_quantity(self, ticker, budget):
        """Calculates the quantity of a stock based on the current market price
        and a maximum budget.
        """

        # Calculate the quantity based on the current price and the budget.
        price = self.alpaca.get_last_price(ticker)

        if price == -1:
            self.logs.error("Failed to determine price for: %s" % ticker)
            return (None, None)

        # Use maximum possible quantity within the budget.
        quantity = int(budget // price)
        self.logs.debug("Determined quantity %s for %s at $%s within $%s." %
                        (quantity, ticker, price, budget))

        return (quantity, price)

        def bull(self, ticker, budget):
            """Executes the bullish strategy on the specified stock within the
            specified budget: Buy now at market rate and sell at market rate at
            close.
            """

            # Calculate the quantity.
            quantity, price = self.get_quantity(ticker, budget)
            if not quantity:
                self.logs.warn(f'Cannot trade quantity = {quantity}')
                return False

            # Buy the stock now.
            self.logs.info(f'Trying to buy {quantity} units of {ticker}')
            buy_limit = self.get_buy_limit(price)
            buy_status, buy_order_id = self.alpaca.submit_market_buy(
                ticker, quantity, buy_limit)
            if buy_status not in self.alpaca.positive_statuses:
                return False

            # TODO: Do this properly by checking the order status API and using
            #       retries with exponential backoff.
            #wait for stock order to be filled
            timeout = time.time() + 60 * 10
            check_interval = 15
            while self.alpaca.get_order_status(
                    buy_order_id) != 'filled' and time.time() > timeout:
                time.sleep(check_interval)  #order not filled for 10 minutes
                check_interval *= 1.1

            if self.alpaca.get_order_status(buy_order_id) != 'filled':
                self.logs.warn(
                    f'Not able to fill buy for {ticker}. Cancelling order')
                self.alpaca.cancel_order(buy_order_id)
                return False

            self.logs.warn(
                f'Trying to place trailing stop sell order for {ticker}')
            #Create trailing_stop_order
            sell_order_status, sell_order_id = self.alpaca.submit_trailing_stop(
                ticker, quantity, self.trail_percent)
            if sell_order_status == False:
                self.logs.error(
                    f'Not able to place trailing_stop sell order for {ticker}. Order status: {sell_order_status} | Order ID: {sell_order_id}'
                )

            return True

    def bear(self, ticker, budget):
        return False
        """Executes the bearish strategy on the specified stock within the
        specified budget: Sell short at market rate and buy to cover at market
        rate at close.
        """
        """
示例#2
0
class Twitter:
    """A helper for talking to Twitter APIs."""
    def __init__(self, logs_to_cloud):
        self.logs_to_cloud = logs_to_cloud
        self.logs = Logs(name="twitter", to_cloud=self.logs_to_cloud)
        self.twitter_auth = OAuthHandler(TWITTER_CONSUMER_KEY,
                                         TWITTER_CONSUMER_SECRET)
        self.twitter_auth.set_access_token(TWITTER_ACCESS_TOKEN,
                                           TWITTER_ACCESS_TOKEN_SECRET)
        self.twitter_api = API(auth_handler=self.twitter_auth,
                               retry_count=API_RETRY_COUNT,
                               retry_delay=API_RETRY_DELAY_S,
                               retry_errors=API_RETRY_ERRORS,
                               wait_on_rate_limit=True,
                               wait_on_rate_limit_notify=True)
        self.twitter_listener = None

    def start_streaming(self, callback):
        """Starts streaming tweets and returning data to the callback."""

        self.twitter_listener = TwitterListener(
            callback=callback, logs_to_cloud=self.logs_to_cloud)
        twitter_stream = Stream(self.twitter_auth, self.twitter_listener)

        self.logs.debug("Starting stream.")
        twitter_stream.filter(follow=INFLUENCER_USER_IDS)

        # If we got here because of an API error, raise it.
        if self.twitter_listener and self.twitter_listener.get_error_status():
            raise Exception("Twitter API error: %s" %
                            self.twitter_listener.get_error_status())

    def stop_streaming(self):
        """Stops the current stream."""

        if not self.twitter_listener:
            self.logs.warn("No stream to stop.")
            return

        self.logs.debug("Stopping stream.")
        self.twitter_listener.stop_queue()
        self.twitter_listener = None

    def test_tweet(self):
        x = randint(1, 100)
        self.twitter_api.update_status(f'Beep {x} Beep')
        return 9

    def tweet(self, companies, tweet):
        """Posts a tweet listing the companies, their ticker symbols, and a
        quote of the original tweet.
        """

        link = self.get_tweet_link(tweet)
        text = self.make_tweet_text(companies, link)

        self.logs.info("Tweeting: %s" % text)
        self.twitter_api.update_status(text)

    def make_tweet_text(self, companies, link):
        """Generates the text for a tweet."""

        # Find all distinct company names.
        names = []
        for company in companies:
            name = company["name"]
            if name not in names:
                names.append(name)

        # Collect the ticker symbols and sentiment scores for each name.
        tickers = {}
        sentiments = {}
        for name in names:
            tickers[name] = []
            for company in companies:
                if company["name"] == name:
                    ticker = company["ticker"]
                    tickers[name].append(ticker)
                    sentiment = company["sentiment"]
                    # Assuming the same sentiment for each ticker.
                    sentiments[name] = sentiment

        # Create lines for each name with sentiment emoji and ticker symbols.
        lines = []
        for name in names:
            sentiment_str = self.get_sentiment_emoji(sentiments[name])
            tickers_str = " ".join(["$%s" % t for t in tickers[name]])
            line = "%s %s %s" % (name, sentiment_str, tickers_str)
            lines.append(line)

        # Combine the lines and ellipsize if necessary.
        lines_str = "\n".join(lines)
        size = len(lines_str) + 1 + len(link)
        if size > MAX_TWEET_SIZE:
            self.logs.warn("Ellipsizing lines: %s" % lines_str)
            lines_size = MAX_TWEET_SIZE - len(link) - 2
            lines_str = "%s\u2026" % lines_str[:lines_size]

        # Combine the lines with the link.
        text = "%s\n%s" % (lines_str, link)

        return text

    def get_sentiment_emoji(self, sentiment):
        """Returns the emoji matching the sentiment."""

        if not sentiment:
            return EMOJI_SHRUG

        if sentiment > 0:
            return EMOJI_THUMBS_UP

        if sentiment < 0:
            return EMOJI_THUMBS_DOWN

        self.logs.warn("Unknown sentiment: %s" % sentiment)
        return EMOJI_SHRUG

    def get_tweet(self, tweet_id):
        """Looks up metadata for a single tweet."""

        # Use tweet_mode=extended so we get the full text.
        print(tweet_id)
        status = self.twitter_api.get_status(tweet_id, tweet_mode="extended")
        if not status:
            self.logs.error("Bad status response: %s" % status)
            return None

        # Use the raw JSON, just like the streaming API.
        return status._json

    # def get_all_tweets(self):
    #     """Looks up metadata for the most recent Influencer tweets."""

    #     tweets = []

    #     # Only the 3,200 most recent tweets are available through the API.
    #     for status in Cursor(self.twitter_api.user_timeline,
    #                          user_id=INFLUENCER_USER_ID,
    #                          exclude_replies=True).items():
    #         # Extract the quoted influencer tweet, if available.
    #         try:
    #             quoted_tweet_id = status.quoted_status_id
    #         except AttributeError:
    #             self.logs.warn('Skipping tweet: %s' % status)
    #             continue

    #         # Get the tweet details and add it to the list.
    #         quoted_tweet = status._json #self.get_tweet(quoted_tweet_id)
    #         tweets.append(quoted_tweet)

    #     self.logs.debug("Got tweets: %s" % tweets)

    #     return tweets

    def get_tweet_text(self, tweet):
        """Returns the full text of a tweet."""

        # The format for getting at the full text is different depending on
        # whether the tweet came through the REST API or the Streaming API:
        # https://dev.twitter.com/overview/api/upcoming-changes-to-tweets
        try:
            if "extended_tweet" in tweet:
                self.logs.debug("Decoding extended tweet from Streaming API.")
                return tweet["extended_tweet"]["full_text"]
            elif "full_text" in tweet:
                self.logs.debug("Decoding extended tweet from REST API.")
                return tweet["full_text"]
            else:
                self.logs.debug("Decoding short tweet.")
                return tweet["text"]
        except KeyError:
            self.logs.error("Malformed tweet: %s" % tweet)
            return None

    def get_tweet_link(self, tweet):
        """Creates the link URL to a tweet."""

        if not tweet:
            self.logs.error("No tweet to get link.")
            return None

        try:
            screen_name = tweet["user"]["screen_name"]
            id_str = tweet["id_str"]
        except KeyError:
            self.logs.error("Malformed tweet for link: %s" % tweet)
            return None

        link = TWEET_URL % (screen_name, id_str)
        return link
示例#3
0
class Trading:
    """A helper for making stock trades."""
    def __init__(self, logs_to_cloud):
        self.logs = Logs(name="trading", to_cloud=logs_to_cloud)

    def make_trades(self, companies):
        """Executes trades for the specified companies based on sentiment."""

        # Determine whether the markets are open.
        market_status = self.get_market_status()
        if not market_status:
            self.logs.error("Not trading without market status.")
            return False

        # Filter for any strategies resulting in trades.
        actionable_strategies = []
        market_status = self.get_market_status()
        for company in companies:
            strategy = self.get_strategy(company, market_status)
            if strategy["action"] != "hold":
                actionable_strategies.append(strategy)
            else:
                self.logs.warn("Dropping strategy: %s" % strategy)

        if not actionable_strategies:
            self.logs.warn("No actionable strategies for trading.")
            return False

        # Calculate the budget per strategy.
        balance = self.get_balance()
        budget = self.get_budget(balance, len(actionable_strategies))

        if not budget:
            self.logs.warn("No budget for trading: %s %s %s" %
                           (budget, balance, actionable_strategies))
            return False

        self.logs.debug("Using budget: %s x $%s" %
                        (len(actionable_strategies), budget))

        # Handle trades for each strategy.
        success = True
        for strategy in actionable_strategies:
            ticker = strategy["ticker"]
            action = strategy["action"]

            # Execute the strategy.
            if action == "bull":
                self.logs.info("Bull: %s %s" % (ticker, budget))
                success = success and self.bull(ticker, budget)
            elif action == "bear":
                self.logs.info("Bear: %s %s" % (ticker, budget))
                success = success and self.bear(ticker, budget)
            else:
                self.logs.error("Unknown strategy: %s" % strategy)

        return success

    def get_strategy(self, company, market_status):
        """Determines the strategy for trading a company based on sentiment and
        market status.
        """

        ticker = company["ticker"]
        sentiment = company["sentiment"]

        strategy = {}
        strategy["name"] = company["name"]
        if "root" in company:
            strategy["root"] = company["root"]
        strategy["sentiment"] = company["sentiment"]
        strategy["ticker"] = ticker
        if "exchange" in company:
            strategy["exchange"] = company["exchange"]

        # Don't do anything with blacklisted stocks.
        if ticker in TICKER_BLACKLIST:
            strategy["action"] = "hold"
            strategy["reason"] = "blacklist"
            return strategy

        # TODO: Figure out some strategy for the markets closed case.
        # Don't trade unless the markets are open or are about to open.
        if market_status != "open" and market_status != "pre":
            strategy["action"] = "hold"
            strategy["reason"] = "market closed"
            return strategy

        # Can't trade without sentiment.
        if sentiment == 0:
            strategy["action"] = "hold"
            strategy["reason"] = "neutral sentiment"
            return strategy

        # Determine bull or bear based on sentiment direction.
        if sentiment > 0:
            strategy["action"] = "bull"
            strategy["reason"] = "positive sentiment"
            return strategy
        else:  # sentiment < 0
            strategy[
                "action"] = "hold"  #typically "bear", but i dont want to short anything
            strategy["reason"] = "negative sentiment"
            return strategy

    def get_budget(self, balance, num_strategies):
        """Calculates the budget per company based on the available balance."""

        if num_strategies <= 0:
            self.logs.warn("No budget without strategies.")
            return 0.0
        return round(
            min(
                MAX_POSITION,
                max(0.0, balance - CASH_HOLD) / num_strategies /
                NUM_TRADES_PER_DAY), 2)

    def get_market_status(self):
        """Finds out whether the markets are open right now."""

        clock_url = TRADEKING_API_URL % "market/clock"
        response = self.make_request(url=clock_url)

        if not response:
            self.logs.error("No clock response.")
            return None

        try:
            clock_response = response["response"]
            current = clock_response["status"]["current"]
        except KeyError:
            self.logs.error("Malformed clock response: %s" % response)
            return None

        if current not in ["pre", "open", "after", "close"]:
            self.logs.error("Unknown market status: %s" % current)
            return None

        self.logs.debug("Current market status: %s" % current)
        return current

    def get_historical_prices(self, ticker, timestamp):
        """Finds the last price at or before a timestamp and at EOD."""

        # Start with today's quotes.
        quotes = self.get_day_quotes(ticker, timestamp)
        if not quotes:
            self.logs.warn("No quotes for day: %s" % timestamp)
            return None

        # Depending on where we land relative to the trading day, pick the
        # right quote and EOD quote.
        first_quote = quotes[0]
        first_quote_time = first_quote["time"]
        last_quote = quotes[-1]
        last_quote_time = last_quote["time"]
        if timestamp < first_quote_time:
            self.logs.debug("Using previous quote.")
            previous_day = self.get_previous_day(timestamp)
            previous_quotes = self.get_day_quotes(ticker, previous_day)
            if not previous_quotes:
                self.logs.error("No quotes for previous day: %s" %
                                previous_day)
                return None
            quote_at = previous_quotes[-1]
            quote_eod = last_quote
        elif timestamp >= first_quote_time and timestamp <= last_quote_time:
            self.logs.debug("Using closest quote.")
            # Walk through the quotes until we stepped over the timestamp.
            previous_quote = first_quote
            for quote in quotes:
                quote_time = quote["time"]
                if quote_time > timestamp:
                    break
                previous_quote = quote
            quote_at = previous_quote
            quote_eod = last_quote
        else:  # timestamp > last_quote_time
            self.logs.debug("Using last quote.")
            quote_at = last_quote
            next_day = self.get_next_day(timestamp)
            next_quotes = self.get_day_quotes(ticker, next_day)
            if not next_quotes:
                self.logs.error("No quotes for next day: %s" % next_day)
                return None
            quote_eod = next_quotes[-1]

        self.logs.debug("Using quotes: %s %s" % (quote_at, quote_eod))
        return {"at": quote_at["price"], "eod": quote_eod["price"]}

    def get_historical_prices_T_min(self, ticker, timestamp):
        """Finds the last price at or before a timestamp and at EOD."""
        T = SELL_AFTER_MIN
        # Start with today's quotes.
        quotes = self.get_day_quotes(ticker, timestamp)
        if not quotes:
            self.logs.warn("No quotes for day: %s" % timestamp)
            return None

        # Depending on where we land relative to the trading day, pick the
        # right quote and T min later quote (or end of day if end of day is less than T min away).
        first_quote = quotes[0]
        first_quote_time = first_quote["time"]
        last_quote = quotes[-1]
        last_quote_time = last_quote["time"]
        if timestamp < first_quote_time:
            self.logs.debug("Using previous quote.")
            previous_day = self.get_previous_day(timestamp)
            previous_quotes = self.get_day_quotes(ticker, previous_day)
            if not previous_quotes:
                self.logs.error("No quotes for previous day: %s" %
                                previous_day)
                return None
            quote_at = previous_quotes[-1]
            quote_eod = quotes[T]  #the quote T minutes into the day
        elif timestamp >= first_quote_time and timestamp <= last_quote_time:
            self.logs.debug("Using closest quote.")
            # Walk through the quotes until we stepped over the timestamp.
            previous_quote = first_quote
            for i, quote in enumerate(quotes):
                quote_time = quote["time"]
                if quote_time > timestamp:
                    break
                previous_quote = quote
            quote_at = previous_quote
            if i + T < len(quotes):
                quote_eod = quotes[i + T]
            else:
                quote_eod = quotes[-1]
        else:  # timestamp > last_quote_time
            self.logs.debug("Using last quote.")
            quote_at = last_quote
            next_day = self.get_next_day(timestamp)
            next_quotes = self.get_day_quotes(ticker, next_day)
            if not next_quotes:
                self.logs.error("No quotes for next day: %s" % next_day)
                return None
            quote_eod = next_quotes[T]

        self.logs.debug("Using quotes: %s %s" % (quote_at, quote_eod))
        return {"at": quote_at["price"], "eod": quote_eod["price"]}

    def get_day_quotes(self, ticker, timestamp):
        """Collects all quotes from the day of the market timestamp."""

        polygon_client = PolygonClient(POLYGON_API_KEY)
        quotes = []

        time.sleep(
            15
        )  ## TODO: Pay polygon for increased api usage and remove this timer

        # The timestamp is expected in market time.
        day_str = timestamp.strftime("%Y-%m-%d")
        response = polygon_client.stocks_equities_aggregates(
            ticker, 1, "minute", day_str, day_str)
        if not response or response.status != "OK" or not response.results:
            self.logs.error(
                "Failed to request historical data for %s on %s: %s" %
                (ticker, timestamp, response))
            return None

        for result in response.results:
            try:
                # Parse and convert the current minute's timestamp.
                minute_timestamp = result["t"] / 1000
                minute_market_time = self.utc_to_market_time(
                    datetime.fromtimestamp(minute_timestamp))

                # Use the price at the beginning of the minute.
                price = result["o"]
                if not price or price < 0:
                    self.logs.warn("Invalid price: %s" % price)
                    continue

                quote = {"time": minute_market_time, "price": price}
                quotes.append(quote)
            except (KeyError, TypeError, ValueError) as e:
                self.logs.warn("Failed to parse result: %s" % e)

        return quotes

    def is_trading_day(self, timestamp):
        """Tests whether markets are open on a given day."""

        # Markets are closed on holidays.
        if timestamp in UnitedStates():
            self.logs.debug("Identified holiday: %s" % timestamp)
            return False

        # Markets are closed on weekends.
        if timestamp.weekday() in [5, 6]:
            self.logs.debug("Identified weekend: %s" % timestamp)
            return False

        # Otherwise markets are open.
        return True

    def get_previous_day(self, timestamp):
        """Finds the previous trading day."""

        previous_day = timestamp - timedelta(days=1)

        # Walk backwards until we hit a trading day.
        while not self.is_trading_day(previous_day):
            previous_day -= timedelta(days=1)

        self.logs.debug("Previous trading day for %s: %s" %
                        (timestamp, previous_day))
        return previous_day

    def get_next_day(self, timestamp):
        """Finds the next trading day."""

        next_day = timestamp + timedelta(days=1)

        # Walk forward until we hit a trading day.
        while not self.is_trading_day(next_day):
            next_day += timedelta(days=1)

        self.logs.debug("Next trading day for %s: %s" % (timestamp, next_day))
        return next_day

    def utc_to_market_time(self, timestamp):
        """Converts a UTC timestamp to local market time."""

        utc_time = utc.localize(timestamp)
        market_time = utc_time.astimezone(MARKET_TIMEZONE)

        return market_time

    def market_time_to_utc(self, timestamp):
        """Converts a timestamp in local market time to UTC."""

        market_time = MARKET_TIMEZONE.localize(timestamp)
        utc_time = market_time.astimezone(utc)

        return utc_time

    def as_market_time(self, year, month, day, hour=0, minute=0, second=0):
        """Creates a timestamp in market time."""

        market_time = datetime(year, month, day, hour, minute, second)
        return MARKET_TIMEZONE.localize(market_time)

    def make_request(self, url, method="GET", body="", headers=None):
        """Makes a request to the TradeKing API."""

        consumer = Consumer(key=TRADEKING_CONSUMER_KEY,
                            secret=TRADEKING_CONSUMER_SECRET)
        token = Token(key=TRADEKING_ACCESS_TOKEN,
                      secret=TRADEKING_ACCESS_TOKEN_SECRET)
        client = Client(consumer, token)

        body_bytes = body.encode("utf-8")
        self.logs.debug("TradeKing request: %s %s %s %s" %
                        (url, method, body_bytes, headers))
        response, content = client.request(url,
                                           method=method,
                                           body=body_bytes,
                                           headers=headers)
        self.logs.debug("TradeKing response: %s %s" % (response, content))

        try:
            return loads(content)
        except ValueError:
            self.logs.error("Failed to decode JSON response: %s" % content)
            return None

    def xml_tostring(self, xml):
        """Generates a string representation of the XML."""

        return tostring(xml, encoding="utf-8").decode("utf-8")

    def fixml_buy_now(self, ticker, quantity, limit):
        self.logs.info(
            f'Making a trade: Buying {quantity} units of {ticker} at limit price of {limit}'
        )
        """Generates the FIXML for a buy order."""

        fixml = Element("FIXML")
        fixml.set("xmlns", FIXML_NAMESPACE)
        order = SubElement(fixml, "Order")
        order.set("TmInForce", "0")  # Day order
        order.set("Typ", "2")  # Limit
        order.set("Side", "1")  # Buy
        order.set("Px", "%.2f" % limit)  # Limit price
        order.set("Acct", TRADEKING_ACCOUNT_NUMBER)
        instrmt = SubElement(order, "Instrmt")
        instrmt.set("SecTyp", "CS")  # Common stock
        instrmt.set("Sym", ticker)
        ord_qty = SubElement(order, "OrdQty")
        ord_qty.set("Qty", str(quantity))

        return self.xml_tostring(fixml)

    def fixml_sell_eod(self, ticker, quantity, limit):
        """Generates the FIXML for a sell order."""
        self.logs.info(
            f'Placing EoD order: Selling {quantity} units of {ticker} at limit price of {limit}'
        )

        fixml = Element("FIXML")
        fixml.set("xmlns", FIXML_NAMESPACE)
        order = SubElement(fixml, "Order")
        order.set("TmInForce", "7")  # Market on close
        order.set("Typ", "2")  # Limit
        order.set("Side", "2")  # Sell
        order.set("Px", "%.2f" % limit)  # Limit price
        order.set("Acct", TRADEKING_ACCOUNT_NUMBER)
        instrmt = SubElement(order, "Instrmt")
        instrmt.set("SecTyp", "CS")  # Common stock
        instrmt.set("Sym", ticker)
        ord_qty = SubElement(order, "OrdQty")
        ord_qty.set("Qty", str(quantity))

        return self.xml_tostring(fixml)

    def fixml_short_now(self, ticker, quantity, limit):
        """Generates the FIXML for a sell short order."""

        fixml = Element("FIXML")
        fixml.set("xmlns", FIXML_NAMESPACE)
        order = SubElement(fixml, "Order")
        order.set("TmInForce", "0")  # Day order
        order.set("Typ", "2")  # Limit
        order.set("Side", "5")  # Sell short
        order.set("Px", "%.2f" % limit)  # Limit price
        order.set("Acct", TRADEKING_ACCOUNT_NUMBER)
        instrmt = SubElement(order, "Instrmt")
        instrmt.set("SecTyp", "CS")  # Common stock
        instrmt.set("Sym", ticker)
        ord_qty = SubElement(order, "OrdQty")
        ord_qty.set("Qty", str(quantity))

        return self.xml_tostring(fixml)

    def fixml_cover_eod(self, ticker, quantity, limit):
        """Generates the FIXML for a sell to cover order."""

        fixml = Element("FIXML")
        fixml.set("xmlns", FIXML_NAMESPACE)
        order = SubElement(fixml, "Order")
        order.set("TmInForce", "7")  # Market on close
        order.set("Typ", "2")  # Limit
        order.set("Side", "1")  # Buy
        order.set("Px", "%.2f" % limit)  # Limit price
        order.set("AcctTyp", "5")  # Cover
        order.set("Acct", TRADEKING_ACCOUNT_NUMBER)
        instrmt = SubElement(order, "Instrmt")
        instrmt.set("SecTyp", "CS")  # Common stock
        instrmt.set("Sym", ticker)
        ord_qty = SubElement(order, "OrdQty")
        ord_qty.set("Qty", str(quantity))

        return self.xml_tostring(fixml)

    def get_buy_limit(self, price):
        """Calculates the limit price for a buy (or cover) order."""

        return round((1 + LIMIT_FRACTION) * price, 2)

    def get_sell_limit(self, price):
        """Calculates the limit price for a sell (or short) order."""

        return round((1 - LIMIT_FRACTION) * price, 2)

    def get_balance(self):
        """Finds the cash balance in dollars available to spend."""

        balances_url = TRADEKING_API_URL % ("accounts/%s" %
                                            TRADEKING_ACCOUNT_NUMBER)
        response = self.make_request(url=balances_url)

        if not response:
            self.logs.error("No balances response.")
            return 0

        try:
            balances = response["response"]
            money = balances["accountbalance"]["money"]
            cash_str = money["cashavailable"]
            uncleareddeposits_str = money["uncleareddeposits"]
        except KeyError:
            self.logs.error("Malformed balances response: %s" % response)
            return 0

        try:
            cash = float(cash_str)
            uncleareddeposits = float(uncleareddeposits_str)
            return cash - uncleareddeposits
        except ValueError:
            self.logs.error("Malformed number in response: %s" % money)
            return 0

    def get_last_price(self, ticker):
        """Finds the last trade price for the specified stock."""

        quotes_url = TRADEKING_API_URL % "market/ext/quotes"
        quotes_url += "?symbols=%s" % ticker
        quotes_url += "&fids=last,date,symbol,exch_desc,name"

        response = self.make_request(url=quotes_url)

        if not response:
            self.logs.error("No quotes response for %s: %s" %
                            (ticker, response))
            return None

        try:
            quotes = response["response"]
            quote = quotes["quotes"]["quote"]
            last_str = quote["last"]
        except KeyError:
            self.logs.error("Malformed quotes response: %s" % response)
            return None

        self.logs.debug("Quote for %s: %s" % (ticker, quote))

        try:
            last = float(last_str)
        except ValueError:
            self.logs.error("Malformed last for %s: %s" % (ticker, last_str))
            return None

        if last > 0:
            return last
        else:
            self.logs.error("Bad quote for: %s" % ticker)
            return None

    def get_order_url(self):
        """Gets the TradeKing URL for placing orders."""

        url_path = "accounts/%s/orders" % TRADEKING_ACCOUNT_NUMBER
        if not USE_REAL_MONEY:
            url_path += "/preview"
        return TRADEKING_API_URL % url_path

    def get_quantity(self, ticker, budget):
        """Calculates the quantity of a stock based on the current market price
        and a maximum budget.
        """

        # Calculate the quantity based on the current price and the budget.
        price = self.get_last_price(ticker)
        if not price:
            self.logs.error("Failed to determine price for: %s" % ticker)
            return (None, None)

        # Use maximum possible quantity within the budget.
        quantity = int(budget // price)
        self.logs.debug("Determined quantity %s for %s at $%s within $%s." %
                        (quantity, ticker, price, budget))

        return (quantity, price)

    def bull(self, ticker, budget):
        """Executes the bullish strategy on the specified stock within the
        specified budget: Buy now at market rate and sell at market rate at
        close.
        """

        # Calculate the quantity.
        quantity, price = self.get_quantity(ticker, budget)
        if not quantity:
            self.logs.warn("Not trading without quantity.")
            return False

        # Buy the stock now.
        buy_limit = self.get_buy_limit(price)
        buy_fixml = self.fixml_buy_now(ticker, quantity, buy_limit)
        if not self.make_order_request(buy_fixml):
            return False

        # Sell the stock at close.
        sell_limit = self.get_sell_limit(price)
        sell_fixml = self.fixml_sell_eod(ticker, quantity, sell_limit)
        # TODO: Do this properly by checking the order status API and using
        #       retries with exponential backoff.
        # Wait until the previous order has been executed.
        Timer(ORDER_DELAY_S, self.make_order_request, [sell_fixml]).start()

        return True

    def bear(self, ticker, budget):
        """Executes the bearish strategy on the specified stock within the
        specified budget: Sell short at market rate and buy to cover at market
        rate at close.
        """

        # Calculate the quantity.
        quantity, price = self.get_quantity(ticker, budget)
        if not quantity:
            self.logs.warn("Not trading without quantity.")
            return False

        # Short the stock now.
        short_limit = self.get_sell_limit(price)
        short_fixml = self.fixml_short_now(ticker, quantity, short_limit)
        if not self.make_order_request(short_fixml):
            return False

        # Cover the short at close.
        cover_limit = self.get_buy_limit(price)
        cover_fixml = self.fixml_cover_eod(ticker, quantity, cover_limit)
        # TODO: Do this properly by checking the order status API and using
        #       retries with exponential backoff.
        # Wait until the previous order has been executed.
        Timer(ORDER_DELAY_S, self.make_order_request, [cover_fixml]).start()

        return True

    def make_order_request(self, fixml):
        """Executes an order defined by FIXML and verifies the response."""
        response = self.make_request(url=self.get_order_url(),
                                     method="POST",
                                     body=fixml,
                                     headers=FIXML_HEADERS)

        if not response:
            self.logs.error("No order response for: %s" % fixml)
            return False

        try:
            order_response = response["response"]
            error = order_response["error"]
        except KeyError:
            self.logs.error("Malformed order response: %s" % response)
            return False

        # The error field indicates whether the order succeeded.
        error = order_response["error"]
        if error != "Success":
            self.logs.error("Error in order response: %s %s" %
                            (error, order_response))
            return False

        return True
示例#4
0
class TwitterListener(StreamListener):
    """A listener class for handling streaming Twitter data."""
    def __init__(self, callback, logs_to_cloud):
        self.logs_to_cloud = logs_to_cloud
        self.logs = Logs(name="twitter-listener", to_cloud=self.logs_to_cloud)
        self.callback = callback
        self.error_status = None
        self.start_queue()

    def start_queue(self):
        """Creates a queue and starts the worker threads."""

        self.queue = Queue()
        self.stop_event = Event()
        self.logs.debug("Starting %s worker threads." % NUM_THREADS)
        self.workers = []
        for worker_id in range(NUM_THREADS):
            worker = Thread(target=self.process_queue, args=[worker_id])
            worker.daemon = True
            worker.start()
            self.workers.append(worker)

    def stop_queue(self):
        """Shuts down the queue and worker threads."""

        # First stop the queue.
        if self.queue:
            self.logs.debug("Stopping queue.")
            self.queue.join()
        else:
            self.logs.warn("No queue to stop.")

        # Then stop the worker threads.
        if self.workers:
            self.logs.debug("Stopping %d worker threads." % len(self.workers))
            self.stop_event.set()
            for worker in self.workers:
                # Block until the thread terminates.
                worker.join()
        else:
            self.logs.warn("No worker threads to stop.")

    def process_queue(self, worker_id):
        """Continuously processes tasks on the queue."""

        # Create a new logs instance (with its own httplib2 instance) so that
        # there is a separate one for each thread.
        logs = Logs("twitter-listener-worker-%s" % worker_id,
                    to_cloud=self.logs_to_cloud)

        logs.debug("Started worker thread: %s" % worker_id)
        while not self.stop_event.is_set():
            try:
                data = self.queue.get(block=True, timeout=QUEUE_TIMEOUT_S)
                start_time = time()
                self.handle_data(logs, data)
                self.queue.task_done()
                end_time = time()
                qsize = self.queue.qsize()
                logs.debug("Worker %s took %.f ms with %d tasks remaining." %
                           (worker_id, end_time - start_time, qsize))
            except Empty:
                logs.debug("Worker %s timed out on an empty queue." %
                           worker_id)
                continue
            except Exception:
                # The main loop doesn't catch and report exceptions from
                # background threads, so do that here.
                logs.catch()
        logs.debug("Stopped worker thread: %s" % worker_id)

    def on_error(self, status):
        """Handles any API errors."""

        self.logs.error("Twitter error: %s" % status)
        self.error_status = status
        self.stop_queue()
        return False

    def get_error_status(self):
        """Returns the API error status, if there was one."""
        return self.error_status

    def on_data(self, data):
        """Puts a task to process the new data on the queue."""

        # Stop streaming if requested.
        if self.stop_event.is_set():
            return False

        # Put the task on the queue and keep streaming.
        self.queue.put(data)
        return True

    def handle_data(self, logs, data):
        """Sanity-checks and extracts the data before sending it to the
        callback.
        """

        try:
            tweet = loads(data)
        except ValueError:
            logs.error("Failed to decode JSON data: %s" % data)
            return

        try:
            user_id_str = tweet["user"]["id_str"]
            screen_name = tweet["user"]["screen_name"]
        except KeyError:
            logs.error("Malformed tweet: %s" % tweet)
            return

        # We're only interested in tweets from the influencer him/herself, so skip the
        # rest.
        if user_id_str not in INFLUENCER_USER_IDS:
            # logs.debug("Skipping tweet from user: %s (%s)" %
            #    (screen_name, user_id_str))
            logs.debug(
                f'Skipping tweet from user: {screen_name}. The {user_id_str} is not in {INFLUENCER_USER_IDS}'
            )
            return

        logs.info("Examining tweet: %s" % tweet)

        # Call the callback.
        self.callback(tweet)