def check1(): #### python core_test_encoder.py check1 ############################################################# from source.prepro import pd_col_genetic_transform as pd_prepro pars = {'path_pipeline_export': ''} ############################################################ for name in ['boston']: df, col = get_test_data(name) dfnew, col_pars = pd_prepro(df, col, pars) print(pd_prepro, name) print(dfnew[col].head(3).T, col) print(dfnew.head(3).T, col_pars)
def check1(): #### python core_test_encoder.py check1 ############################################################# from source.prepro import pd_col_genetic_transform as pd_prepro pars = {'path_pipeline_export': ''} ############################################################ for name in ['boston']: ## condition for gplearn.SymbolicTransformer: ## len(col) < population_size ## for boston dataset, the number of features is 13, so pupulation_size should be greater than 13 df, col = get_test_data(name) print(len(col)) pars = {'coly': 'price', 'pars_genetic': {'population_size': 14}} dfnew, col_pars = pd_prepro(df, col, pars) print(pd_prepro, name) print(dfnew.head(3).T)