示例#1
0
    def weight_opacities(self, vol_mix_ratio, vol_mix_ratio2, mass, opac):
        """ weights opacities """

        print("\nWeighting by mass mixing ratio...")

        for t in range(self.final_nt):

            for p in range(self.final_np):

                mass_mix_ratio = vol_mix_ratio[
                    p + self.final_np * t] * vol_mix_ratio2[
                        p + self.final_np *
                        t] * mass / self.mu[p + self.final_np * t]

                for x in range(self.nx):

                    tls.percent_counter(t, self.final_nt, p, self.final_np, x,
                                        self.nx)

                    for y in range(self.ny):

                        weighted_opac = mass_mix_ratio * opac[
                            y + self.ny * x + self.ny * self.nx * p +
                            self.ny * self.nx * self.final_np * t]

                        self.combined_opacities[
                            y + self.ny * x + self.ny * self.nx * p + self.ny *
                            self.nx * self.final_np * t] += weighted_opac
示例#2
0
    def big_loop(self, param):
        """ loops through the molecules and connects the other methods - aka the big guy """

        for m in range(len(self.mol_list)):

            self.press_cgs = []
            self.lamda_delim = []
            self.lamda_mid = []
            self.d_lamda = []
            self.numin_mol_list = []
            self.numax_mol_list = []
            self.temp_mol_list = []
            # list with all the opacities for each y value
            self.ky = []

            self.init_mol(m)

            percentage = 0

            if self.check_if_exist(param, m):

                # skip to next molecule
                continue

            for t in range(len(self.temp_list)):

                for p in range(len(self.press_exp_list)):

                    print('t:', t, 'p:', p)

                    tls.percent_counter(t, len(self.temp_list), p, len(self.press_exp_list))

                    if self.press_exp_list[p] >= 0:
                        char = 'p'
                    else:
                        char = 'n'

                    for n in range(len(self.numin_mol_list)):

                        self.coeffs = []
                        self.ystart = []

                        self.read_chebyshev(m,p,t,char,n)

                        self.calc_opac()

                    if p == 0 and t == 0:
                        self.cons_check()

                    self.fill_rearr()

            self.conversion()

            self.write_tell(param, m)
示例#3
0
    def calc_h_minus(self, conti, param):
        """ calculates the H- continuum opacity """

        print("\nCalculating H- ...")

        total_opac = []

        # pressure and temperature dependent bound-free and free-free opacities
        for t in range(self.final_nt):

            for p in range(self.final_np):

                tls.percent_counter(t, self.final_nt, p, self.final_np)

                for x in range(self.nx):

                    cross_bf_h_min = conti.bf_cross_sect_h_min(
                        self.k_x[x], self.final_temp[t], self.final_press[p],
                        self.n_e[p + self.final_np * t]) / (pc.M_H * pc.AMU)

                    cross_ff_h_min = conti.ff_cross_sect_h_min(
                        self.k_x[x], self.final_temp[t], self.final_press[p],
                        self.n_e[p + self.final_np * t]) / (pc.M_H * pc.AMU)

                    for y in range(self.ny):

                        total_opac.append(cross_bf_h_min + cross_ff_h_min)

        # write to h5 file to allow for quick visualization later
        if param.format == 'ktable':
            ending = "_opac_ip.h5"

        elif param.format == 'sampling':
            ending = "_opac_ip_sampling.h5"

        self.write_h5(param, "H-" + ending, total_opac)

        # add to mol list
        self.molname_list.append("H-".encode('utf8'))

        print("\nH- calculation complete!")

        return total_opac
示例#4
0
    def big_loop(self, param):

        for m in range(len(self.species_name)):

            # get molecular parameter ranges
            files = os.listdir(self.species_path[m])
            file_list = [f for f in files if "Out_" in f]

            temp_list = []
            press_list = []
            numin_list = []
            numax_list = []
            press_exp_list = []
            species_nr = 'not provided'

            for f in file_list:

                if 'Opacity_Atoms' in self.species_path[m]:
                    # numin_list.append(int(f[9:14]))  # taking hardcoded wavenumber limits (see below), because some molecules have lower boundaries
                    # numax_list.append(int(f[15:20]))
                    temp_list.append(int(f[21:26]))
                    if species_nr == 'not provided':
                        species_nr = int(f[4:8])
                elif 'Opacity2' in self.species_path[m]:
                    # numin_list.append(int(f[7:12]))
                    # numax_list.append(int(f[13:18]))
                    temp_list.append(int(f[19:24]))
                    if species_nr == 'not provided':
                        species_nr = int(f[4:6])
                elif 'Opacity3' in self.species_path[m]:
                    # numin_list.append(int(f[4:9]))
                    # numax_list.append(int(f[10:15]))
                    temp_list.append(int(f[16:21]))

            # hardcoded wavenumber limits -- improve this at some point in future
            numin_list = npy.arange(0, 30000, 1000)
            numax_list = npy.arange(1000, 31000, 1000)

            # delete duplicate entries in the lists and sort in ascending order
            # numin_list = list(set(numin_list))
            # numax_list = list(set(numax_list))
            temp_list = list(set(temp_list))
            numin_list.sort()
            numax_list.sort()
            temp_list.sort()

            temp_min = min(temp_list)
            temp_max = max(temp_list)
            numin = min(numin_list)
            numax = max(numax_list)

            # hardcoded pressures -- improve this at some point in future
            if 'Opacity_Atoms' not in self.species_path[m]:
                press_list_p1 = [10**p for p in npy.arange(0, 10, 1)]
                press_list_p2 = [
                    10**p for p in npy.arange(0.33333333, 9.33333333, 1)
                ]
                press_list_p3 = [
                    10**p for p in npy.arange(0.66666666, 9.66666666, 1)
                ]
                press_list = npy.append(
                    press_list_p1, npy.append(press_list_p2, press_list_p3))
                press_list.sort()

                press_exp_list = [
                    'n600', 'n566', 'n533', 'n500', 'n466', 'n433', 'n400',
                    'n366', 'n333', 'n300', 'n266', 'n233', 'n200', 'n166',
                    'n133', 'n100', 'n066', 'n033', 'p000', 'p033', 'p066',
                    'p100', 'p133', 'p166', 'p200', 'p233', 'p266', 'p300'
                ]

            elif 'Opacity_Atoms' in self.species_path[m]:

                press_list = [1e-2]

                press_exp_list = ['n800']

            # some user feedback to check whether all is fine
            print("\n--- working on ---")
            print("molecule or atom: ", self.species_name[m])
            print("species number: ", species_nr)
            print("wavenumber range: ", numin, numax)
            print("temperature range: ", temp_min, temp_max)
            print("number of wavelength bins:", len(self.rt_nu), "\n")

            opac_array = []

            # read files
            for t in range(len(temp_list)):

                for p in range(len(press_exp_list)):

                    tls.percent_counter(t, len(temp_list), p,
                                        len(press_exp_list))

                    opac_array_temp = []

                    for n in range(len(numin_list)):

                        for i in range(len(self.rt_nu)):

                            if self.rt_nu[i] < numin_list[n]:
                                continue

                            elif numin_list[n] <= self.rt_nu[i] < numax_list[n]:

                                try:
                                    if 'Opacity_Atoms' in self.species_path[m]:
                                        content = npy.fromfile(
                                            self.species_path[m] +
                                            "Out_{:04d}_{:05d}_{:05d}_{:05d}_".
                                            format(species_nr, numin_list[n],
                                                   numax_list[n], temp_list[t])
                                            + press_exp_list[p] + ".bin",
                                            npy.float32, -1, "")
                                    elif 'Opacity3' in self.species_path[m]:
                                        content = npy.fromfile(
                                            self.species_path[m] +
                                            "Out_{:05d}_{:05d}_{:05d}_".format(
                                                numin_list[n], numax_list[n],
                                                temp_list[t]) +
                                            press_exp_list[p] + ".bin",
                                            npy.float32, -1, "")
                                    elif 'Opacity2' in self.species_path[m]:
                                        content = npy.fromfile(
                                            self.species_path[m] +
                                            "Out_{:02d}_{:05d}_{:05d}_{:05d}_".
                                            format(species_nr, numin_list[n],
                                                   numax_list[n], temp_list[t])
                                            + press_exp_list[p] + ".bin",
                                            npy.float32, -1, "")

                                    index = round(self.rt_nu[i] * 100) - int(
                                        numin_list[n] * 100)
                                    opac_array_temp.append(content[index])

                                except IOError:
                                    opac_array_temp.append(1e-15)

                            elif self.rt_nu[i] >= numax_list[n]:
                                break

                    # reverse array
                    opac_array_temp.reverse()
                    opac_array.extend(opac_array_temp)

            try:  # create directory if necessary
                os.makedirs(param.resampling_path)
            except OSError:
                if not os.path.isdir(param.resampling_path):
                    raise

            # save to hdf5
            with h5py.File(
                    param.resampling_path + self.species_name[m] +
                    "_opac_sampling.h5", "w") as f:

                f.create_dataset("pressures", data=press_list)
                f.create_dataset("temperatures", data=temp_list)
                f.create_dataset("wavelengths", data=self.rt_lamda)
                f.create_dataset("opacities", data=opac_array)

            print("\nSuccessfully completed -->", self.species_name[m],
                  "<-- !\n---------------------")
示例#5
0
    def weight_opacities(self,
                         param,
                         species,
                         vol_mix_ratio,
                         mass,
                         kpoints,
                         cia='no'):
        """ weights opacities """

        try:
            with h5py.File(param.resampling_path + species + ".h5",
                           "r") as weightfile:

                self.mixed_opacities = [
                    k for k in weightfile["weighted kpoints"][:]
                ]

            print(
                "\nWeighted file " + param.resampling_path + species +
                ".h5 already exists. Reading in weighted opacities for this molecule..."
            )

            if len(self.mixed_opacities
                   ) == self.nt * self.np * self.nx * self.ny:

                print("Dimensions test passed\n")

            else:
                print("Dimensions test failed. Aborting...")
                raise SystemExit()

        except OSError:

            if cia == 'yes':
                vol_mix_ratio2 = npy.concatenate(
                    (self.fastchem_data_low['H2'],
                     self.fastchem_data_high['H2']))

            print("\nWeighting by mass mixing ratio...")

            for t in range(self.nt):

                for p in range(self.np):

                    mass_mix_ratio = vol_mix_ratio[
                        p + self.np * t] * mass / self.mu[p + self.np * t]

                    if param.special_abundance == 'pure_H2O':
                        mass_mix_ratio = 1
                        self.mu[p + self.np * t] = 18.0153

                    elif param.special_abundance == 'pure_CO2':
                        mass_mix_ratio = 1
                        self.mu[p + self.np * t] = 44.01

                    if param.special_abundance == 'venus' and species == 'H2O_weighted':
                        mass_mix_ratio = 1.227e-5
                        self.mu[p + self.np * t] = 44.01

                    if param.special_abundance == 'venus' and species == 'CO2_weighted':
                        mass_mix_ratio = 1
                        self.mu[p + self.np * t] = 44.01

                    if cia == 'yes':

                        mass_mix_ratio *= vol_mix_ratio2[p + self.np * t]

                    for x in range(self.nx):

                        tls.percent_counter(t, self.nt, p, self.np, x, self.nx)

                        for y in range(self.ny):

                            mixed = mass_mix_ratio * kpoints[
                                y + self.ny * x + self.ny * self.nx * p +
                                self.ny * self.nx * self.np * t]

                            self.mixed_opacities.append(mixed)

            with h5py.File(param.resampling_path + species + ".h5",
                           "w") as weightfile:

                weightfile.create_dataset("weighted kpoints",
                                          data=self.mixed_opacities)
示例#6
0
    def tabulate_rayleigh_cross_section(self, ray, param, f_h2o):
        """ tabulates the rayleigh cross sections for various species """

        print("Tabulating Rayleigh cross-sections...")

        try:
            with h5py.File(param.final_path + "Rayleigh.h5", "r") as ray_file:
                self.weighted_cross_ray_table = [
                    o for o in ray_file["weighted Rayleigh cross-sections"][:]
                ]
                self.pure_cross_ray_h2_table = [
                    o for o in ray_file["pure H2 Rayleigh cross-sections"][:]
                ]
                self.pure_cross_ray_he_table = [
                    o for o in ray_file["pure He Rayleigh cross-sections"][:]
                ]
                self.pure_cross_ray_h_table = [
                    o for o in ray_file["pure H Rayleigh cross-sections"][:]
                ]
                self.pure_cross_ray_co2_table = [
                    o for o in ray_file["pure CO2 Rayleigh cross-sections"][:]
                ]
                self.pure_cross_ray_h2o_table = [
                    o for o in ray_file["pure H2O Rayleigh cross-sections"][:]
                ]

            print(
                "File " + param.final_path +
                "Rayleigh.h5 already exists. Reading of Rayleigh cross-sections successful."
            )

        except OSError or KeyError:

            # obtain relevant volume mixing ratios
            f_h2 = npy.concatenate(
                (self.fastchem_data_low['H2'], self.fastchem_data_high['H2']))
            f_he = npy.concatenate(
                (self.fastchem_data_low['He'], self.fastchem_data_high['He']))
            f_co2 = npy.concatenate((self.fastchem_data_low['C1O2'],
                                     self.fastchem_data_high['C1O2']))
            f_h = npy.concatenate(
                (self.fastchem_data_low['H'], self.fastchem_data_high['H']))

            if param.special_abundance == 'pure_H2O':
                f_h2o = [1 for i in range(len(f_h2o))]
                f_co2 = [0 for i in range(len(f_co2))]
                f_h2 = [0 for i in range(len(f_h2))]
                f_h = [0 for i in range(len(f_h))]
                f_he = [0 for i in range(len(f_he))]

            elif param.special_abundance == 'pure_CO2':
                f_h2o = [0 for i in range(len(f_h2o))]
                f_co2 = [1 for i in range(len(f_co2))]
                f_h2 = [0 for i in range(len(f_h2))]
                f_h = [0 for i in range(len(f_h))]
                f_he = [0 for i in range(len(f_he))]

            elif param.special_abundance == 'venus':
                f_h2o = [3e-5 for i in range(len(f_h2o))]
                f_co2 = [1 for i in range(len(f_co2))]
                f_h2 = [0 for i in range(len(f_h2))]
                f_h = [0 for i in range(len(f_h))]
                f_he = [0 for i in range(len(f_he))]

            for t in range(self.nt):
                for p in range(self.np):

                    tls.percent_counter(t, self.nt, p, self.np)

                    for x in range(self.nx):

                        cross_ray_h2o = ray.cross_sect(
                            self.k_x[x],
                            ray.index_h2o(self.k_x[x], self.chem_press[p],
                                          self.chem_temp[t],
                                          self.mu[p + self.np * t]),
                            ray.n_ref_h2o(self.chem_press[p],
                                          self.chem_temp[t]),
                            ray.King_h2o,
                            lamda_limit=2.5e-4)
                        cross_ray_h2 = ray.cross_sect(
                            self.k_x[x], ray.index_h2(self.k_x[x]),
                            ray.n_ref_h2, ray.King_h2)
                        cross_ray_he = ray.cross_sect(
                            self.k_x[x], ray.index_he(self.k_x[x]),
                            ray.n_ref_he, ray.King_he)
                        cross_ray_co2 = ray.cross_sect(
                            self.k_x[x], ray.index_co2(self.k_x[x]),
                            ray.n_ref_co2, ray.King_co2(self.k_x[x]))
                        cross_ray_h = ray.cross_sect_h(self.k_x[x])

                        self.pure_cross_ray_h2o_table.append(cross_ray_h2o)

                        # the following cross-sections depend only on the wavelength
                        if t == 0 and p == 0:
                            self.pure_cross_ray_h2_table.append(cross_ray_h2)
                            self.pure_cross_ray_he_table.append(cross_ray_he)
                            self.pure_cross_ray_co2_table.append(cross_ray_co2)
                            self.pure_cross_ray_h_table.append(cross_ray_h)

                        # mix everything according to their volume (number) mixing ratios
                        mix =     f_h2[p + self.np * t] * cross_ray_h2 \
                                + f_he[p + self.np * t] * cross_ray_he \
                                + f_h2o[p + self.np * t] * cross_ray_h2o \
                                + f_co2[p + self.np * t] * cross_ray_co2 \
                                + f_h[p + self.np * t] * cross_ray_h

                        self.weighted_cross_ray_table.append(mix)

            try:
                os.makedirs(param.final_path)
            except OSError:
                if not os.path.isdir(param.final_path):
                    raise

            with h5py.File(param.final_path + "Rayleigh.h5", "w") as ray_file:
                ray_file.create_dataset("pressures", data=self.chem_press)
                ray_file.create_dataset("temperatures", data=self.chem_temp)
                ray_file.create_dataset("wavelengths", data=self.k_x)
                ray_file.create_dataset("weighted Rayleigh cross-sections",
                                        data=self.weighted_cross_ray_table)
                ray_file.create_dataset("pure H2 Rayleigh cross-sections",
                                        data=self.pure_cross_ray_h2_table)
                ray_file.create_dataset("pure He Rayleigh cross-sections",
                                        data=self.pure_cross_ray_he_table)
                ray_file.create_dataset("pure H2O Rayleigh cross-sections",
                                        data=self.pure_cross_ray_h2o_table)
                ray_file.create_dataset("pure CO2 Rayleigh cross-sections",
                                        data=self.pure_cross_ray_co2_table)
                ray_file.create_dataset("pure H Rayleigh cross-sections",
                                        data=self.pure_cross_ray_h_table)
                ray_file.create_dataset("FastChem path",
                                        data=param.fastchem_path)

        ray.success()
示例#7
0
    def interpolate_to_new_grid(self, temp_old, temp_new, press_old, press_new,
                                k_old):

        print("opacity temperature grid:\n", temp_old[:3], "...",
              temp_old[-3:])
        print("final table temperature grid:\n", temp_new[:3], "...",
              temp_new[-3:])
        print("opacity pressure grid:\n", press_old[:3], "...", press_old[-3:])
        print("final table pressure grid:\n", press_new[:3], "...",
              press_new[-3:])

        print("ny:", self.ny, "nx:", self.nx, "np:", self.np, "nt:", self.nt)

        k_new = npy.zeros(self.ny * self.nx * self.np * self.nt)

        old_nt = len(temp_old)
        old_np = len(press_old)

        print("old np:", old_np)
        print("old nt:", old_nt)

        for i in range(self.nt):

            for j in range(self.np):

                tls.percent_counter(i, self.nt, j, self.np)

                reduced_t = 0
                reduced_p = 0

                try:
                    t_left = max([
                        t for t in range(len(temp_old))
                        if temp_old[t] <= temp_new[i]
                    ])
                except ValueError:
                    t_left = 0
                    reduced_t = 1

                try:
                    p_left = max([
                        p for p in range(len(press_old))
                        if press_old[p] <= press_new[j]
                    ])
                except ValueError:
                    p_left = 0
                    reduced_p = 1

                if t_left == len(temp_old) - 1:
                    reduced_t = 1

                if p_left == len(press_old) - 1:
                    reduced_p = 1

                if reduced_p == 1 and reduced_t == 1:

                    for y in range(self.ny):
                        for x in range(self.nx):

                            k_new[y + self.ny * x + self.ny * self.nx * j + self.ny * self.nx * self.np * i] = \
                                k_old[y + self.ny*x + self.ny*self.nx*p_left + self.ny*self.nx*old_np*t_left]

                elif reduced_p != 1 and reduced_t == 1:

                    p_right = p_left + 1

                    for y in range(self.ny):
                        for x in range(self.nx):

                            k_new[y + self.ny*x + self.ny*self.nx*j + self.ny*self.nx*self.np*i] = \
                                (k_old[y + self.ny*x + self.ny*self.nx*p_right + self.ny*self.nx*old_np*t_left] * (npy.log10(press_new[j]) - npy.log10(press_old[p_left])) \
                                + k_old[y + self.ny*x + self.ny*self.nx*p_left + self.ny*self.nx*old_np*t_left] * (npy.log10(press_old[p_right]) - npy.log10(press_new[j])) \
                                 ) / (npy.log10(press_old[p_right]) - npy.log10(press_old[p_left]))

                elif reduced_p == 1 and reduced_t != 1:

                    t_right = t_left + 1

                    for y in range(self.ny):
                        for x in range(self.nx):

                            k_new[y + self.ny * x + self.ny * self.nx * j + self.ny * self.nx * self.np * i] = \
                                (k_old[y + self.ny * x + self.ny * self.nx * p_left + self.ny * self.nx * old_np * t_right] * (temp_new[i] - temp_old[t_left]) \
                                 + k_old[y + self.ny * x + self.ny * self.nx * p_left + self.ny * self.nx * old_np * t_left] * (temp_old[t_right] - temp_new[i]) \
                                 ) / (temp_old[t_right] - temp_old[t_left])

                elif reduced_p != 1 and reduced_t != 1:

                    p_right = p_left + 1
                    t_right = t_left + 1

                    for y in range(self.ny):
                        for x in range(self.nx):
                            try:
                                k_new[y + self.ny * x + self.ny * self.nx * j + self.ny * self.nx * self.np * i] = \
                                    (
                                     k_old[y + self.ny * x + self.ny * self.nx * p_right + self.ny * self.nx * old_np * t_right] * (temp_new[i] - temp_old[t_left]) * (npy.log10(press_new[j]) - npy.log10(press_old[p_left])) \
                                     + k_old[y + self.ny * x + self.ny * self.nx * p_left + self.ny * self.nx * old_np * t_right] * (temp_new[i] - temp_old[t_left]) * (npy.log10(press_old[p_right]) - npy.log10(press_new[j]))\
                                     + k_old[y + self.ny * x + self.ny * self.nx * p_right + self.ny * self.nx * old_np * t_left] * (temp_old[t_right] - temp_new[i]) * (npy.log10(press_new[j]) - npy.log10(press_old[p_left])) \
                                     + k_old[y + self.ny * x + self.ny * self.nx * p_left + self.ny * self.nx * old_np * t_left] * (temp_old[t_right] - temp_new[i]) * (npy.log10(press_old[p_right]) - npy.log10(press_new[j])) \
                                     ) / ((temp_old[t_right] - temp_old[t_left]) * (npy.log10(press_old[p_right]) - npy.log10(press_old[p_left])))
                            except IndexError:
                                print("IndexError at:", y, x, j, i, p_left,
                                      p_right, t_left, t_right, len(k_old),
                                      len(temp_new), len(press_new))

        return k_new
示例#8
0
    def include_rayleigh_cross_section(self, ray, species, vol_mix_ratio):
        """ tabulates the rayleigh cross sections for various species """

        print("\nCalculating scattering cross sections ...")

        # this is kind of hidden -- TODO move to a better location at some point
        # references for the scattering data:
        # H2: Cox 2000
        # He: Sneep & Ubachs 2005, Thalman et al. 2014
        # H: Lee & Kim 2004
        # H2O: Murphy 1977, Wagner & Kretzschmar 2008
        # CO: Sneep & Ubachs 2005
        # CO2: Sneep & Ubachs 2005, Thalman et al. 2014
        # O2: Sneep & Ubachs 2005, Thalman et al. 2014
        # N2: Sneep & Ubachs 2005, Thalman et al. 2014

        list_of_implemented_scattering_species = [
            'H', 'H2', 'He', 'H2O', 'CO2', 'CO', 'O2', 'N2'
        ]

        if species.name in list_of_implemented_scattering_species:

            for t in range(self.final_nt):
                for p in range(self.final_np):

                    tls.percent_counter(t, self.final_nt, p, self.final_np)

                    for x in range(self.nx):

                        cross_section = 0

                        if species.name != 'H':

                            if species.name == "H2O":

                                index = ray.index_h2o(
                                    self.k_x[x], self.final_press[p],
                                    self.final_temp[t],
                                    self.mu[p + self.final_np * t])
                                n_ref = ray.n_ref_h2o(self.final_press[p],
                                                      self.final_temp[t])
                                King = ray.King_h2o
                                lamda_limit = 2.5e-4

                            elif species.name == "CO2":

                                index = ray.index_co2(self.k_x[x])
                                n_ref = ray.n_ref_co2
                                King = ray.King_co2(self.k_x[x])
                                lamda_limit = self.k_x[-1]

                            elif species.name == "H2":

                                index = ray.index_h2(self.k_x[x])
                                n_ref = ray.n_ref_h2
                                King = ray.King_h2
                                lamda_limit = self.k_x[-1]

                            elif species.name == "He":

                                index = ray.index_he(self.k_x[x])
                                n_ref = ray.n_ref_he
                                King = ray.King_he
                                lamda_limit = self.k_x[-1]

                            elif species.name == "N2":

                                index = ray.index_n2(self.k_x[x])
                                n_ref = ray.n_ref_n2
                                King = ray.King_n2(self.k_x[x])
                                lamda_limit = self.k_x[-1]

                            elif species.name == "O2":

                                index = ray.index_o2(self.k_x[x])
                                n_ref = ray.n_ref_o2
                                King = ray.King_o2(self.k_x[x])
                                lamda_limit = self.k_x[-1]

                            elif species.name == "CO":

                                index = ray.index_co(self.k_x[x])
                                n_ref = ray.n_ref_co
                                King = ray.King_co
                                lamda_limit = self.k_x[-1]

                            cross_section = ray.cross_sect(
                                self.k_x[x], index, n_ref, King, lamda_limit)

                        elif species.name == "H":

                            cross_section = ray.cross_sect_h(self.k_x[x])

                        self.combined_cross_sections[
                            x + self.nx * p +
                            self.nx * self.final_np * t] += vol_mix_ratio[
                                p + self.final_np * t] * cross_section

        else:
            print(
                "WARNING WARNING WARNING: Rayleigh scattering cross sections for species",
                species.name,
                "not found. Please double-check! Continuing without those... ")
示例#9
0
    def interpolate_opacity_to_final_grid(self, k_press, k_temp, kpoints):

        temp_old = k_temp
        press_old = k_press
        temp_new = self.final_temp
        press_new = self.final_press

        k_old = kpoints

        print("opacity temperature grid:\n", temp_old[:3], "...",
              temp_old[-3:])
        print("final table temperature grid:\n", temp_new[:3], "...",
              temp_new[-3:])
        print("opacity pressure grid:\n", press_old[:3], "...", press_old[-3:])
        print("final table pressure grid:\n", press_new[:3], "...",
              press_new[-3:])

        print("ny:", self.ny, "nx:", self.nx, "np:", self.final_np, "nt:",
              self.final_nt)

        k_new = npy.zeros(self.ny * self.nx * self.final_np * self.final_nt)

        old_nt = len(temp_old)
        old_np = len(press_old)

        print("old np:", old_np)
        print("old nt:", old_nt)

        for i in range(self.final_nt):

            for j in range(self.final_np):

                tls.percent_counter(i, self.final_nt, j, self.final_np)

                reduced_t = 0
                reduced_p = 0

                try:
                    t_left = max([
                        t for t in range(len(temp_old))
                        if temp_old[t] <= temp_new[i]
                    ])
                except ValueError:
                    t_left = 0
                    reduced_t = 1

                try:
                    p_left = max([
                        p for p in range(len(press_old))
                        if press_old[p] <= press_new[j]
                    ])
                except ValueError:
                    p_left = 0
                    reduced_p = 1

                if t_left == len(temp_old) - 1:
                    reduced_t = 1

                if p_left == len(press_old) - 1:
                    reduced_p = 1

                if reduced_p == 1 and reduced_t == 1:

                    for y in range(self.ny):
                        for x in range(self.nx):

                            k_new[y + self.ny * x + self.ny * self.nx * j + self.ny * self.nx * self.final_np * i] = \
                                k_old[y + self.ny*x + self.ny*self.nx*p_left + self.ny*self.nx*old_np*t_left]

                elif reduced_p != 1 and reduced_t == 1:

                    p_right = p_left + 1

                    for y in range(self.ny):
                        for x in range(self.nx):

                            k_new[y + self.ny*x + self.ny*self.nx*j + self.ny*self.nx*self.final_np*i] = \
                                (k_old[y + self.ny*x + self.ny*self.nx*p_right + self.ny*self.nx*old_np*t_left] * (npy.log10(press_new[j]) - npy.log10(press_old[p_left])) \
                                + k_old[y + self.ny*x + self.ny*self.nx*p_left + self.ny*self.nx*old_np*t_left] * (npy.log10(press_old[p_right]) - npy.log10(press_new[j])) \
                                 ) / (npy.log10(press_old[p_right]) - npy.log10(press_old[p_left]))

                elif reduced_p == 1 and reduced_t != 1:

                    t_right = t_left + 1

                    for y in range(self.ny):
                        for x in range(self.nx):

                            k_new[y + self.ny * x + self.ny * self.nx * j + self.ny * self.nx * self.final_np * i] = \
                                (k_old[y + self.ny * x + self.ny * self.nx * p_left + self.ny * self.nx * old_np * t_right] * (temp_new[i] - temp_old[t_left]) \
                                 + k_old[y + self.ny * x + self.ny * self.nx * p_left + self.ny * self.nx * old_np * t_left] * (temp_old[t_right] - temp_new[i]) \
                                 ) / (temp_old[t_right] - temp_old[t_left])

                elif reduced_p != 1 and reduced_t != 1:

                    p_right = p_left + 1
                    t_right = t_left + 1

                    for y in range(self.ny):
                        for x in range(self.nx):

                            k_new[y + self.ny * x + self.ny * self.nx * j + self.ny * self.nx * self.final_np * i] = \
                                (
                                 k_old[y + self.ny * x + self.ny * self.nx * p_right + self.ny * self.nx * old_np * t_right] * (temp_new[i] - temp_old[t_left]) * (npy.log10(press_new[j]) - npy.log10(press_old[p_left])) \
                                 + k_old[y + self.ny * x + self.ny * self.nx * p_left + self.ny * self.nx * old_np * t_right] * (temp_new[i] - temp_old[t_left]) * (npy.log10(press_old[p_right]) - npy.log10(press_new[j]))\
                                 + k_old[y + self.ny * x + self.ny * self.nx * p_right + self.ny * self.nx * old_np * t_left] * (temp_old[t_right] - temp_new[i]) * (npy.log10(press_new[j]) - npy.log10(press_old[p_left])) \
                                 + k_old[y + self.ny * x + self.ny * self.nx * p_left + self.ny * self.nx * old_np * t_left] * (temp_old[t_right] - temp_new[i]) * (npy.log10(press_old[p_right]) - npy.log10(press_new[j])) \
                                 ) / ((temp_old[t_right] - temp_old[t_left]) * (npy.log10(press_old[p_right]) - npy.log10(press_old[p_left])))

                if npy.isnan(k_new[y + self.ny * x + self.ny * self.nx * j +
                                   self.ny * self.nx * self.final_np * i]):
                    print("NaN-Error at entry with indices:", y, x, j, i)
                    raise SystemExit()

        return k_new
示例#10
0
    def big_loop(self, param):

        for m in range(len(self.species_name)):

            if not self.species_path[m].endswith("/"):
                self.species_path[m] += "/"

            # get molecular parameter ranges
            files = os.listdir(self.species_path[m])
            file_list = [
                f for f in files if ("Out_" in f) and ("_cbin" not in f)
            ]

            if param.heliosk_format == 'binary':
                file_list = [f for f in file_list if ".bin" in f]
            elif param.heliosk_format == 'text':
                file_list = [f for f in file_list if ".dat" in f]

            # check that format correct
            if file_list == []:
                print(
                    "No files with the correct format found in the chosen directory. Please double-check that the Helios-K format is correct."
                )
                print("Aborting...")
                raise SystemExit()

            # determine filename structure with one example file in the directory
            file_name = None
            example_file = file_list[0]

            nr_underscore = example_file.count("_")

            indices = []

            for i in range(len(example_file)):

                if not example_file.find("_", i) in indices:
                    indices.append(example_file.find("_", i))

            indices.pop(-1)  # remove "-1" entry

            if nr_underscore > 4:

                # Aha! This is the case with species number
                start_file_name = indices[0] + 1
                end_file_name = indices[-4]

                file_name = example_file[start_file_name:end_file_name]

            start_numin = indices[-4] + 1
            end_numin = indices[-3]

            start_numax = indices[-3] + 1
            end_numax = indices[-2]

            start_temp = indices[-2] + 1
            end_temp = indices[-1]

            start_press = indices[-1] + 1
            end_press = indices[-1] + 5

            temp_list = []
            numin_list = []
            numax_list = []
            press_exp_list = []

            for f in file_list:

                numin_list.append(int(f[start_numin:end_numin]))
                numax_list.append(int(f[start_numax:end_numax]))
                temp_list.append(int(f[start_temp:end_temp]))
                press_exp_list.append(f[start_press:end_press])

            # delete duplicate entries in the lists and sort in ascending order
            temp_list = list(set(temp_list))
            temp_list.sort()

            numin_list = list(set(numin_list))
            numin_list.sort()

            numax_list = list(set(numax_list))
            numax_list.sort()

            press_list = [
                self.press_dict[press_exp_list[p]]
                for p in range(len(press_exp_list))
            ]
            press_list = list(set(press_list))
            press_list.sort()

            # getting back the press_exp list in ascending order
            press_exp_list_ordered = []

            for p in press_list:
                for k in self.press_dict.keys():

                    if self.press_dict[k] == p:
                        press_exp_list_ordered.append(k)
                        break

            temp_min = min(temp_list)
            temp_max = max(temp_list)
            numin = min(numin_list)
            numax = max(numax_list)
            press_min = min(press_list)
            press_max = max(press_list)

            # some user feedback to check whether all is fine
            print("\n--- working on ---")
            print("molecule or atom: ", self.species_name[m])
            if not file_name is None:
                print("Files named as:", file_name)
            else:
                print("Files not specifically named.")
            print("wavenumber range: ", numin, numax)
            print("temperature range: ", temp_min, temp_max)
            print("pressure range: {:g} {:g}".format(press_min, press_max))
            print("number of wavelength bins:", len(self.rt_nu), "\n")

            opac_array = []

            # read files
            for t in range(len(temp_list)):

                for p in range(len(press_exp_list_ordered)):

                    opac_array_temp = []

                    for n in range(len(numin_list)):

                        exist = 1

                        tls.percent_counter(t, len(temp_list), p,
                                            len(press_exp_list_ordered))

                        # opening correct file
                        if param.heliosk_format == "binary":

                            if file_name is None:

                                file = self.species_path[
                                    m] + "Out_{:05d}_{:05d}_{:05d}_".format(
                                        numin_list[n], numax_list[n],
                                        temp_list[t]
                                    ) + press_exp_list_ordered[p] + ".bin"

                            else:

                                file = self.species_path[
                                    m] + "Out_{}_{:05d}_{:05d}_{:05d}_".format(
                                        file_name, numin_list[n],
                                        numax_list[n], temp_list[t]
                                    ) + press_exp_list_ordered[p] + ".bin"

                            try:
                                content = npy.fromfile(file, npy.float32, -1,
                                                       "")

                            except IOError:

                                print(
                                    "WARNING: File '" + file +
                                    "' not found. Using value 1e-15 for opacity in this regime."
                                )
                                exist = 0

                        elif param.heliosk_format == "text":

                            if file_name is None:

                                file = self.species_path[
                                    m] + "Out_{:05d}_{:05d}_{:05d}_".format(
                                        numin_list[n], numax_list[n],
                                        temp_list[t]
                                    ) + press_exp_list_ordered[p] + ".dat"

                            else:

                                file = self.species_path[
                                    m] + "Out_{}_{:05d}_{:05d}_{:05d}_".format(
                                        file_name, numin_list[n],
                                        numax_list[n], temp_list[t]
                                    ) + press_exp_list_ordered[p] + ".dat"

                            try:

                                content = self.read_dat_file(file)

                            except IOError:

                                print(
                                    "WARNING: File '" + file +
                                    "' not found. Using value 1e-15 for opacity in this regime."
                                )
                                exist = 0

                        # read out the entries that match with the chosen wavenumber grid values
                        for i in range(len(self.rt_nu)):

                            if self.rt_nu[i] < numin_list[n]:
                                continue

                            elif numin_list[n] <= self.rt_nu[i] < numax_list[n]:

                                if exist == 1:

                                    index = round(self.rt_nu[i] * 100) - int(
                                        numin_list[n] * 100
                                    )  # WARNING: Assumes a HELIOS-K resolution of 0.01 cm^-1
                                    opac_array_temp.append(
                                        float(content[index]))

                                elif exist == 0:

                                    opac_array_temp.append(1e-15)

                            elif self.rt_nu[i] >= numax_list[n]:
                                break

                    # filling up opacity array to match the length of the wavenumber array
                    # this is necessary if opacity data wavenumber grid ends earlier than the input wavenumber grid
                    while len(opac_array_temp) < len(self.rt_nu):

                        opac_array_temp.append(1e-15)

                    # reverse array
                    opac_array_temp.reverse()
                    opac_array.extend(opac_array_temp)

            try:  # create directory if necessary
                os.makedirs(param.resampling_path)
            except OSError:
                if not os.path.isdir(param.resampling_path):
                    raise

            # save to hdf5
            with h5py.File(
                    param.resampling_path + self.species_name[m] +
                    "_opac_sampling.h5", "w") as f:

                f.create_dataset("pressures", data=press_list)
                f.create_dataset("temperatures", data=temp_list)
                f.create_dataset("wavelengths", data=self.rt_lamda)
                f.create_dataset("opacities", data=opac_array)

            print("\nSuccessfully completed -->", self.species_name[m],
                  "<-- !\n---------------------")