def main(): config = model_config() if config.check: config.save_dir = "./tmp/" config.use_gpu = torch.cuda.is_available() and config.gpu >= 0 device = config.gpu torch.cuda.set_device(device) # Data definition corpus = KnowledgeCorpus(data_dir=config.data_dir, data_prefix=config.data_prefix, min_freq=3, max_vocab_size=config.max_vocab_size, min_len=config.min_len, max_len=config.max_len, embed_file=config.embed_file, with_label=config.with_label, share_vocab=config.share_vocab) corpus.load() if config.test and config.ckpt: corpus.reload(data_type='test') train_iter = corpus.create_batches( config.batch_size, "train", shuffle=True, device=device) valid_iter = corpus.create_batches( config.batch_size, "valid", shuffle=False, device=device) test_iter = corpus.create_batches( config.batch_size, "test", shuffle=False, device=device) # Model definition model = KnowledgeSeq2Seq(src_vocab_size=corpus.SRC.vocab_size, tgt_vocab_size=corpus.TGT.vocab_size, embed_size=config.embed_size, hidden_size=config.hidden_size, padding_idx=corpus.padding_idx, num_layers=config.num_layers, bidirectional=config.bidirectional, attn_mode=config.attn, with_bridge=config.with_bridge, tie_embedding=config.tie_embedding, dropout=config.dropout, use_gpu=config.use_gpu, use_bow=config.use_bow, use_dssm=config.use_dssm, use_pg=config.use_pg, use_gs=config.use_gs, pretrain_epoch=config.pretrain_epoch, use_posterior=config.use_posterior, weight_control=config.weight_control, concat=config.decode_concat) model_name = model.__class__.__name__ # Generator definition generator = TopKGenerator(model=model, src_field=corpus.SRC, tgt_field=corpus.TGT, cue_field=corpus.CUE, max_length=config.max_dec_len, ignore_unk=config.ignore_unk, length_average=config.length_average, use_gpu=config.use_gpu) # Interactive generation testing if config.interact and config.ckpt: model.load(config.ckpt) return generator # Testing elif config.test and config.ckpt: print(model) model.load(config.ckpt) print("Testing ...") metrics, scores = evaluate(model, test_iter) print(metrics.report_cum()) print("Generating ...") evaluate_generation(generator, test_iter, save_file=config.gen_file, verbos=True) else: # Load word embeddings if config.use_embed and config.embed_file is not None: model.encoder.embedder.load_embeddings( corpus.SRC.embeddings, scale=0.03) model.decoder.embedder.load_embeddings( corpus.TGT.embeddings, scale=0.03) # Optimizer definition optimizer = getattr(torch.optim, config.optimizer)( model.parameters(), lr=config.lr) # Learning rate scheduler if config.lr_decay is not None and 0 < config.lr_decay < 1.0: lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, factor=config.lr_decay, patience=1, verbose=True, min_lr=1e-5) else: lr_scheduler = None # Save directory date_str, time_str = datetime.now().strftime("%Y%m%d-%H%M%S").split("-") result_str = "{}-{}".format(model_name, time_str) if not os.path.exists(config.save_dir): os.makedirs(config.save_dir) # Logger definition logger = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG, format="%(message)s") fh = logging.FileHandler(os.path.join(config.save_dir, "train.log")) logger.addHandler(fh) # Save config params_file = os.path.join(config.save_dir, "params.json") with open(params_file, 'w') as fp: json.dump(config.__dict__, fp, indent=4, sort_keys=True) print("Saved params to '{}'".format(params_file)) logger.info(model) # Train logger.info("Training starts ...") trainer = Trainer(model=model, optimizer=optimizer, train_iter=train_iter, valid_iter=valid_iter, logger=logger, generator=generator, valid_metric_name="-loss", num_epochs=config.num_epochs, save_dir=config.save_dir, log_steps=config.log_steps, valid_steps=config.valid_steps, grad_clip=config.grad_clip, lr_scheduler=lr_scheduler, save_summary=False) if config.ckpt is not None: trainer.load(file_prefix=config.ckpt) trainer.train() logger.info("Training done!") # Test logger.info("") trainer.load(os.path.join(config.save_dir, "best")) logger.info("Testing starts ...") metrics, scores = evaluate(model, test_iter) logger.info(metrics.report_cum()) logger.info("Generation starts ...") test_gen_file = os.path.join(config.save_dir, "test.result") evaluate_generation(generator, test_iter, save_file=test_gen_file, verbos=True)
def main(): """ main """ config = model_config() if config.check: config.save_dir = "./tmp/" config.use_gpu = torch.cuda.is_available() and config.gpu >= 0 device = config.gpu torch.cuda.set_device(device) # Data definition if config.pos: corpus = Entity_Corpus_pos(data_dir=config.data_dir, data_prefix=config.data_prefix, entity_file=config.entity_file, min_freq=config.min_freq, max_vocab_size=config.max_vocab_size) else: corpus = Entity_Corpus(data_dir=config.data_dir, data_prefix=config.data_prefix, entity_file=config.entity_file, min_freq=config.min_freq, max_vocab_size=config.max_vocab_size) corpus.load() if config.test and config.ckpt: corpus.reload(data_type='test') train_iter = corpus.create_batches( config.batch_size, "train", shuffle=True, device=device) valid_iter = corpus.create_batches( config.batch_size, "valid", shuffle=False, device=device) if config.for_test: test_iter = corpus.create_batches( config.batch_size, "test", shuffle=False, device=device) else: test_iter = corpus.create_batches( config.batch_size, "valid", shuffle=False, device=device) if config.preprocess: print('预处理完毕') return if config.pos: if config.rnn_type == 'lstm': model = Entity_Seq2Seq_pos(src_vocab_size=corpus.SRC.vocab_size, pos_vocab_size=corpus.POS.vocab_size, embed_size=config.embed_size, hidden_size=config.hidden_size, padding_idx=corpus.padding_idx, num_layers=config.num_layers, bidirectional=config.bidirectional, attn_mode=config.attn, with_bridge=config.with_bridge, dropout=config.dropout, use_gpu=config.use_gpu, pretrain_epoch=config.pretrain_epoch) else: model = Entity_Seq2Seq_pos_gru(src_vocab_size=corpus.SRC.vocab_size, pos_vocab_size=corpus.POS.vocab_size, embed_size=config.embed_size, hidden_size=config.hidden_size, padding_idx=corpus.padding_idx, num_layers=config.num_layers, bidirectional=config.bidirectional, attn_mode=config.attn, with_bridge=config.with_bridge, dropout=config.dropout, use_gpu=config.use_gpu, pretrain_epoch=config.pretrain_epoch) else: if config.rnn_type == 'lstm': if config.elmo: model = Entity_Seq2Seq_elmo(src_vocab_size=corpus.SRC.vocab_size, embed_size=config.embed_size, hidden_size=config.hidden_size, padding_idx=corpus.padding_idx, num_layers=config.num_layers, bidirectional=config.bidirectional, attn_mode=config.attn, with_bridge=config.with_bridge, dropout=config.dropout, use_gpu=config.use_gpu, pretrain_epoch=config.pretrain_epoch, batch_size=config.batch_size) else: model = Entity_Seq2Seq(src_vocab_size=corpus.SRC.vocab_size, embed_size=config.embed_size, hidden_size=config.hidden_size, padding_idx=corpus.padding_idx, num_layers=config.num_layers, bidirectional=config.bidirectional, attn_mode=config.attn, with_bridge=config.with_bridge, dropout=config.dropout, use_gpu=config.use_gpu, pretrain_epoch=config.pretrain_epoch) else: # GRU if config.elmo: model = Entity_Seq2Seq_elmo_gru(src_vocab_size=corpus.SRC.vocab_size, embed_size=config.embed_size, hidden_size=config.hidden_size, padding_idx=corpus.padding_idx, num_layers=config.num_layers, bidirectional=config.bidirectional, attn_mode=config.attn, with_bridge=config.with_bridge, dropout=config.dropout, use_gpu=config.use_gpu, pretrain_epoch=config.pretrain_epoch, batch_size=config.batch_size) # if config.pos: # if config.rnn_type=='lstm': # if config.elmo: # model = Entity_Seq2Seq_elmo(src_vocab_size=corpus.SRC.vocab_size, # embed_size=config.embed_size, hidden_size=config.hidden_size, # padding_idx=corpus.padding_idx, # num_layers=config.num_layers, bidirectional=config.bidirectional, # attn_mode=config.attn, with_bridge=config.with_bridge, # dropout=config.dropout, # use_gpu=config.use_gpu, # pretrain_epoch=config.pretrain_epoch, # batch_size=config.batch_size) # else: # model = Entity_Seq2Seq_pos(src_vocab_size=corpus.SRC.vocab_size, # pos_vocab_size=corpus.POS.vocab_size, # embed_size=config.embed_size, hidden_size=config.hidden_size, # padding_idx=corpus.padding_idx, # num_layers=config.num_layers, bidirectional=config.bidirectional, # attn_mode=config.attn, with_bridge=config.with_bridge, # dropout=config.dropout, # use_gpu=config.use_gpu, # pretrain_epoch=config.pretrain_epoch) # else: # if config.elmo: # model = Entity_Seq2Seq_elmo_gru(src_vocab_size=corpus.SRC.vocab_size, # embed_size=config.embed_size, hidden_size=config.hidden_size, # padding_idx=corpus.padding_idx, # num_layers=config.num_layers, bidirectional=config.bidirectional, # attn_mode=config.attn, with_bridge=config.with_bridge, # dropout=config.dropout, # use_gpu=config.use_gpu, # pretrain_epoch=config.pretrain_epoch, # batch_size=config.batch_size) # else: # model =Entity_Seq2Seq_pos_gru(src_vocab_size=corpus.SRC.vocab_size, # pos_vocab_size=corpus.POS.vocab_size, # embed_size=config.embed_size, hidden_size=config.hidden_size, # padding_idx=corpus.padding_idx, # num_layers=config.num_layers, bidirectional=config.bidirectional, # attn_mode=config.attn, with_bridge=config.with_bridge, # dropout=config.dropout, # use_gpu=config.use_gpu, # pretrain_epoch=config.pretrain_epoch) # else: # model = Entity_Seq2Seq(src_vocab_size=corpus.SRC.vocab_size, # embed_size=config.embed_size, hidden_size=config.hidden_size, # padding_idx=corpus.padding_idx, # num_layers=config.num_layers, bidirectional=config.bidirectional, # attn_mode=config.attn, with_bridge=config.with_bridge, # dropout=config.dropout, # use_gpu=config.use_gpu, # pretrain_epoch=config.pretrain_epoch) model_name = model.__class__.__name__ # Generator definition generator = TopKGenerator(model=model, src_field=corpus.SRC, max_length=config.max_dec_len, ignore_unk=config.ignore_unk, length_average=config.length_average, use_gpu=config.use_gpu, beam_size=config.beam_size) # generator=None # Interactive generation testing if config.interact and config.ckpt: model.load(config.ckpt) return generator # Testing elif config.test and config.ckpt: print(model) model.load(config.ckpt) print("Testing ...") metrics = evaluate(model, valid_iter) print(metrics.report_cum()) print("Generating ...") if config.for_test: evaluate_generation(generator, test_iter, save_file=config.gen_file, verbos=True, for_test=True) else: evaluate_generation(generator, test_iter, save_file=config.gen_file, verbos=True) else: # Load word embeddings if config.saved_embed is not None: model.encoder.embedder.load_embeddings( config.saved_embed, scale=0.03) # Optimizer definition # if config.saved_embed: # embed=[] # other=[] # for name, v in model.named_parameters(): # if '.embedder' in name: # print(name) # embed.append(v) # else: # other.append(v) # optimizer = getattr(torch.optim, config.optimizer)([{'params': other, # 'lr': config.lr, 'eps': 1e-8}, # {'params': embed, 'lr': config.lr/2, 'eps': 1e-8}]) p=model.parameters() p=[x for x in p if x.requires_grad] optimizer = getattr(torch.optim, config.optimizer)( p, lr=config.lr, weight_decay=config.weight_decay) # Learning rate scheduler if config.lr_decay is not None and 0 < config.lr_decay < 1.0: lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, factor=config.lr_decay, patience=1, verbose=True, min_lr=1e-5) else: lr_scheduler = None # Save directory date_str, time_str = datetime.now().strftime("%Y%m%d-%H%M%S").split("-") result_str = "{}-{}".format(model_name, time_str) if not os.path.exists(config.save_dir): os.makedirs(config.save_dir) # Logger definition logger = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG, format="%(message)s") fh = logging.FileHandler(os.path.join(config.save_dir, "train.log")) logger.addHandler(fh) # Save config params_file = os.path.join(config.save_dir, "params.json") with open(params_file, 'w') as fp: json.dump(config.__dict__, fp, indent=4, sort_keys=True) print("Saved params to '{}'".format(params_file)) logger.info(model) # Train logger.info("Training starts ...") trainer = Trainer(model=model, optimizer=optimizer, train_iter=train_iter, valid_iter=valid_iter, logger=logger, generator=generator, valid_metric_name="acc", num_epochs=config.num_epochs, save_dir=config.save_dir, log_steps=config.log_steps, valid_steps=config.valid_steps, grad_clip=config.grad_clip, lr_scheduler=lr_scheduler, save_summary=False) if config.ckpt is not None: trainer.load(file_prefix=config.ckpt) trainer.train() logger.info("Training done!") # Test logger.info("") trainer.load(os.path.join(config.save_dir, "best")) logger.info("Testing starts ...") metrics, scores = evaluate(model, test_iter) logger.info(metrics.report_cum()) logger.info("Generation starts ...") test_gen_file = os.path.join(config.save_dir, "test.result") evaluate_generation(generator, test_iter, save_file=test_gen_file, verbos=True)