def test_parquet(self): languages1 = ["Python", "Java"] languages2 = ["Java"] engine = create_engine("test", SIVA_DIR) res = Ignition(engine) \ .link(HeadFiles()) \ .link(LanguageExtractor()) \ .link(LanguageSelector(languages1)) \ .link(Collector()) \ .execute() self.assertEqual({x.lang for x in res}, set(languages1)) res = Ignition(engine) \ .link(HeadFiles()) \ .link(LanguageExtractor()) \ .link(LanguageSelector(languages2)) \ .link(Collector()) \ .execute() self.assertEqual({x.lang for x in res}, set(languages2)) res = Ignition(engine) \ .link(HeadFiles()) \ .link(LanguageExtractor()) \ .link(LanguageSelector(languages2, blacklist=True)) \ .link(Collector()) \ .execute() self.assertEqual(set(), {x.lang for x in res} & set(languages2)) res = Ignition(engine) \ .link(HeadFiles()) \ .link(LanguageExtractor()) \ .link(LanguageSelector([])) \ .link(Collector()) \ .execute() self.assertEqual(set(), {x.lang for x in res}) parquet_loader = create_parquet_loader("test_parquet", repositories=PARQUET_DIR) df = parquet_loader.execute() with self.assertRaises(AttributeError): LanguageSelector(languages1)(df) df_with_lang = df.withColumn("lang", lit("BestLang")) self.assertEqual( 0, len(LanguageSelector(languages1)(df_with_lang).collect())) self.assertEqual( df_with_lang.collect(), LanguageSelector(["BestLang"])(df_with_lang).collect())
def repo2bow(repository: str, repository_format: str, docfreq_threshold: int, docfreq: DocumentFrequencies, languages: List[str] = None, blacklist_languages=False, engine_kwargs: Dict[str, Any] = None) -> Dict[str, float]: log = logging.getLogger("repo2bow") token_index = {"i." + key: int(val) for (key, val) in docfreq} session_name = "repo2bow-%s" % uuid4() engine_args = { "repositories": repository, "repository_format": repository_format, } if engine_kwargs is not None: engine_args.update(engine_kwargs) engine = create_engine(session_name, **engine_args) root = Ignition(engine) >> RepositoriesFilter(r"^file://.*") >> HeadFiles() if languages is not None: file_source = root >> \ LanguageExtractor() >> \ LanguageSelector(languages=languages, blacklist=blacklist_languages) else: file_source = root bag = (file_source >> UastExtractor() >> Moder("repo") >> UastDeserializer() >> UastRow2Document() >> Uast2BagFeatures( IdentifiersBagExtractor(docfreq_threshold)) >> BagFeatures2TermFreq() >> TFIDF( token_index, docfreq.docs, engine.session.sparkContext) >> Collector()).execute() log.info("extracted %d identifiers", len(bag)) return {r.token[2:]: r.value for r in bag}
def code2vec(args): log = logging.getLogger("code2vec") session_name = "code2vec-%s" % uuid4() root, start_point = create_uast_source(args, session_name) res = start_point \ .link(UastRow2Document()) \ .link(UastDeserializer()) \ .link(Uast2BagFeatures([UastPathsBagExtractor(args.max_length, args.max_width)])) \ .link(Collector()) \ .execute() # TODO: Add rest of data pipeline: extract distinct paths and terminal nodes for embedding mapping # TODO: Add transformer to write bags and vocabs to a model # TODO: Add ML pipeline pipeline_graph(args, log, root)
def repos2bow_template(args, cache_hook: Transformer = None, save_hook: Transformer = None): log = logging.getLogger("repos2bow") extractors = create_extractors_from_args(args) session_name = "repos2bow-%s" % uuid4() root, start_point = create_uast_source(args, session_name) log.info("Loading the document index from %s ...", args.cached_index_path) docfreq = DocumentFrequencies().load(source=args.cached_index_path) document_index = {key: int(val) for (key, val) in docfreq} try: if args.quant is not None: create_or_apply_quant(args.quant, extractors, None) df_model = create_or_load_ordered_df(args, None, None) except ValueError: return 1 ec = EngineConstants.Columns if args.mode == Moder.Options.repo: def keymap(r): return r[ec.RepositoryId] else: def keymap(r): return r[ec.RepositoryId] + UastRow2Document.REPO_PATH_SEP + \ r[ec.Path] + UastRow2Document.PATH_BLOB_SEP + r[ec.BlobId] log.info("Caching UASTs to disk after partitioning by document ...") start_point = start_point.link(Moder(args.mode)) \ .link(Repartitioner.maybe(args.num_iterations, keymap=keymap)) \ .link(Cacher.maybe("DISK_ONLY")) for num_part in range(args.num_iterations): log.info("Running job %s of %s", num_part + 1, args.num_iterations) selected_part = start_point \ .link(PartitionSelector(num_part)) \ .link(Repartitioner.maybe(args.partitions, args.shuffle)) \ .link(Cacher.maybe(args.persist)) if cache_hook is not None: selected_part.link(cache_hook()).execute() uast_extractor = selected_part \ .link(UastRow2Document()) \ .link(Cacher.maybe(args.persist)) log.info("Collecting distinct documents ...") documents = uast_extractor \ .link(FieldsSelector([Uast2BagFeatures.Columns.document])) \ .link(Distinct()) \ .link(Collector()) \ .execute() selected_part.unpersist() documents = {row.document for row in documents} reduced_doc_index = { key: document_index[key] for key in document_index if key in documents} document_indexer = Indexer(Uast2BagFeatures.Columns.document, reduced_doc_index) log.info("Processing %s distinct documents", len(documents)) bags = uast_extractor \ .link(UastDeserializer()) \ .link(Uast2BagFeatures(*extractors)) \ .link(BagFeatures2TermFreq()) \ .link(Cacher.maybe(args.persist)) log.info("Extracting UASTs and collecting distinct tokens ...") tokens = bags \ .link(FieldsSelector([Uast2BagFeatures.Columns.token])) \ .link(Distinct()) \ .link(Collector()) \ .execute() uast_extractor.unpersist() tokens = {row.token for row in tokens} reduced_token_freq = {key: df_model[key] for key in df_model.df if key in tokens} reduced_token_index = {key: df_model.order[key] for key in df_model.df if key in tokens} log.info("Processing %s distinct tokens", len(reduced_token_freq)) log.info("Indexing by document and token ...") bags_writer = bags \ .link(TFIDF(reduced_token_freq, df_model.docs, root.session.sparkContext)) \ .link(document_indexer) \ .link(Indexer(Uast2BagFeatures.Columns.token, reduced_token_index)) if save_hook is not None: bags_writer = bags_writer \ .link(Repartitioner.maybe(args.partitions, args.shuffle)) \ .link(save_hook()) bow = args.bow.split(".asdf")[0] + "_" + str(num_part + 1) + ".asdf" bags_writer \ .link(Repartitioner.maybe( args.partitions, keymap=lambda x: x[Uast2BagFeatures.Columns.document])) \ .link(BOWWriter(document_indexer, df_model, bow, args.batch)) \ .execute() bags.unpersist() pipeline_graph(args, log, root)
def test_collector(self): data = ParquetLoader(session=self.spark, paths=PARQUET_DIR).link(Collector()) \ .execute() self.assertEqual(len(data), 6)
def test_repositories_filter(self): start_point = Ignition(self.engine) repos = start_point.link(RepositoriesFilter(".*antoniolg.*")).link( Collector()).execute() self.assertEqual(len(repos), 1) self.assertEqual(repos[0].id, "github.com/antoniolg/androidmvp.git")