示例#1
0
 def convolve_spectrum(self, cspec, exp_time, noisy=True, prng=None):
     prng = parse_prng(prng)
     exp_time = parse_value(exp_time, "s")
     counts = cspec.flux.value * exp_time * cspec.de.value
     spec = np.histogram(cspec.emid.value, self.ebins, weights=counts)[0]
     conv_spec = np.zeros(self.n_ch)
     pbar = tqdm(leave=True, total=self.n_e, desc="Convolving spectrum ")
     if np.all(self.data["N_GRP"] == 1):
         # We can do things a bit faster if there is only one group each
         f_chan = ensure_numpy_array(np.nan_to_num(self.data["F_CHAN"]))
         n_chan = ensure_numpy_array(np.nan_to_num(self.data["N_CHAN"]))
         mat = np.nan_to_num(np.float64(self.data["MATRIX"]))
         mat_size = np.minimum(n_chan, self.n_ch-f_chan)
         for k in range(self.n_e):
             conv_spec[f_chan[k]:f_chan[k]+n_chan[k]] += spec[k]*mat[k,:mat_size[k]]
             pbar.update()
     else:
         # Otherwise, we have to go step-by-step
         for k in range(self.n_e):
             f_chan = ensure_numpy_array(np.nan_to_num(self.data["F_CHAN"][k]))
             n_chan = ensure_numpy_array(np.nan_to_num(self.data["N_CHAN"][k]))
             mat = np.nan_to_num(np.float64(self.data["MATRIX"][k]))
             mat_size = np.minimum(n_chan, self.n_ch-f_chan)
             for i, f in enumerate(f_chan):
                 conv_spec[f:f+n_chan[i]] += spec[k]*mat[:mat_size[i]]
             pbar.update()
     pbar.close()
     if noisy:
         return prng.poisson(lam=conv_spec)
     else:
         return conv_spec
示例#2
0
    def scatter_energies(self, events, prng=np.random):
        """
        Scatter photon energies with the RMF and produce the 
        corresponding channel values.

        Parameters
        ----------
        events : dict of np.ndarrays
            The energies and positions of the photons. 
        prng : :class:`~numpy.random.RandomState` object or :mod:`~numpy.random`, optional
            A pseudo-random number generator. Typically will only be specified
            if you have a reason to generate the same set of random numbers, such as for a
            test. Default is the :mod:`~numpy.random` module.
        """
        eidxs = np.argsort(events["energy"])
        sorted_e = events["energy"][eidxs]

        detectedChannels = []

        # run through all photon energies and find which bin they go in
        fcurr = 0
        last = sorted_e.shape[0]

        with ProgressBar(last) as pbar:
            for (k, low), high in zip(enumerate(self.elo), self.ehi):
                # weight function for probabilities from RMF
                weights = np.nan_to_num(np.float64(self.data["MATRIX"][k]))
                weights /= weights.sum()
                # build channel number list associated to array value,
                # there are groups of channels in rmfs with nonzero probabilities
                trueChannel = []
                f_chan = ensure_numpy_array(
                    np.nan_to_num(self.data["F_CHAN"][k]))
                n_chan = ensure_numpy_array(
                    np.nan_to_num(self.data["N_CHAN"][k]))
                for start, nchan in zip(f_chan, n_chan):
                    if nchan == 0:
                        trueChannel.append(start)
                    else:
                        trueChannel += list(range(start, start + nchan))
                trueChannel = np.array(trueChannel)
                if len(trueChannel) > 0:
                    e = sorted_e[fcurr:last]
                    nn = np.logical_and(low <= e, e < high).sum()
                    channelInd = prng.choice(len(weights), size=nn, p=weights)
                    detectedChannels.append(trueChannel[channelInd])
                    fcurr += nn
                    pbar.update(fcurr)

        for key in events:
            events[key] = events[key][eidxs]
        events[self.header["CHANTYPE"]] = np.concatenate(detectedChannels)

        return events
示例#3
0
 def _make_channels(self, k):
     # build channel number list associated to array value,
     # there are groups of channels in rmfs with nonzero probabilities
     trueChannel = []
     f_chan = ensure_numpy_array(np.nan_to_num(self.data["F_CHAN"][k]))
     n_chan = ensure_numpy_array(np.nan_to_num(self.data["N_CHAN"][k]))
     for start, nchan in zip(f_chan, n_chan):
         if nchan == 0:
             trueChannel.append(start)
         else:
             trueChannel += list(range(start, start + nchan))
     return np.array(trueChannel)
示例#4
0
 def _make_channels(self, k):
     # build channel number list associated to array value,
     # there are groups of channels in rmfs with nonzero probabilities
     trueChannel = []
     f_chan = ensure_numpy_array(np.nan_to_num(self.data["F_CHAN"][k]))
     n_chan = ensure_numpy_array(np.nan_to_num(self.data["N_CHAN"][k]))
     for start, nchan in zip(f_chan, n_chan):
         if nchan == 0:
             trueChannel.append(start)
         else:
             trueChannel += list(range(start, start + nchan))
     return np.array(trueChannel)
示例#5
0
 def convolve_spectrum(self, cspec, exp_time, prng=None):
     prng = parse_prng(prng)
     exp_time = parse_value(exp_time, "s")
     counts = cspec.flux.value * exp_time * cspec.de.value
     spec = np.histogram(cspec.emid.value, self.ebins, weights=counts)[0]
     conv_spec = np.zeros(self.n_ch)
     pbar = tqdm(leave=True, total=self.n_e, desc="Convolving spectrum ")
     for k in range(self.n_e):
         f_chan = ensure_numpy_array(np.nan_to_num(self.data["F_CHAN"][k]))
         n_chan = ensure_numpy_array(np.nan_to_num(self.data["N_CHAN"][k]))
         mat = np.nan_to_num(np.float64(self.data["MATRIX"][k]))
         for f, n in zip(f_chan, n_chan):
             mat_size = min(n, self.n_ch-f)
             conv_spec[f:f+n] += spec[k]*mat[:mat_size]
         pbar.update()
     pbar.close()
     return prng.poisson(lam=conv_spec)
示例#6
0
 def __init__(self, spectra, images, src_names, ra, dec, fluxes, emin, emax,
              filename):
     self.spectra = ensure_numpy_array(spectra)
     self.images = ensure_numpy_array(images)
     self.src_names = ensure_numpy_array(src_names)
     self.ra = ensure_numpy_array(ra)
     self.dec = ensure_numpy_array(dec)
     self.fluxes = ensure_numpy_array(fluxes)
     self.emin = ensure_numpy_array(emin)
     self.emax = ensure_numpy_array(emax)
     self.filename = filename
     self.num_sources = self.spectra.size
     # timing not yet supported
     self.timing = np.array(["NULL"] * self.num_sources)
示例#7
0
def make_background(exp_time,
                    instrument,
                    sky_center,
                    foreground=True,
                    ptsrc_bkgnd=True,
                    instr_bkgnd=True,
                    no_dither=False,
                    dither_params=None,
                    roll_angle=0.0,
                    subpixel_res=False,
                    input_sources=None,
                    absorb_model="wabs",
                    nH=0.05,
                    aimpt_shift=None,
                    prng=None):
    """
    Make background events.

    Parameters
    ----------
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time to use, in seconds. 
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. 
    sky_center : array, tuple, or list
        The center RA, Dec coordinates of the observation, in degrees.
    foreground : boolean, optional
        Whether or not to include the Galactic foreground. Default: True
    instr_bkgnd : boolean, optional
        Whether or not to include the instrumental background. Default: True
    no_dither : boolean, optional
        If True, turn off dithering entirely. Default: False
    dither_params : array-like of floats, optional
        The parameters to use to control the size and period of the dither
        pattern. The first two numbers are the dither amplitude in x and y
        detector coordinates in arcseconds, and the second two numbers are
        the dither period in x and y detector coordinates in seconds. 
        Default: [8.0, 8.0, 1000.0, 707.0].
    ptsrc_bkgnd : boolean, optional
        Whether or not to include the point-source background. Default: True
        Default: 0.05
    roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The roll angle of the observation in degrees. Default: 0.0
    subpixel_res: boolean, optional
        If True, event positions are not randomized within the pixels 
        within which they are detected. Default: False
    input_sources : string, optional
        If set to a filename, input the point source positions, fluxes,
        and spectral indices from an ASCII table instead of generating
        them. Default: None
    absorb_model : string, optional
        The absorption model to use, "wabs" or "tbabs". Default: "wabs"
    nH : float, optional
        The hydrogen column in units of 10**22 atoms/cm**2. 
        Default: 0.05
    aimpt_shift : array-like, optional
        A two-float array-like object which shifts the aimpoint on the 
        detector from the nominal position. Units are in arcseconds.
        Default: None, which results in no shift from the nominal aimpoint. 
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 
    """
    from soxs.background import make_instrument_background, \
        make_foreground, make_ptsrc_background
    prng = parse_prng(prng)
    exp_time = parse_value(exp_time, "s")
    roll_angle = parse_value(roll_angle, "deg")
    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError(f"Instrument {instrument} is not in the "
                       f"instrument registry!")
    if not instrument_spec["imaging"]:
        raise RuntimeError(f"Instrument '{instrument_spec['name']}' is not "
                           f"designed for imaging observations!")
    fov = instrument_spec["fov"]

    input_events = defaultdict(list)

    arf_file = get_data_file(instrument_spec["arf"])
    arf = AuxiliaryResponseFile(arf_file)
    rmf_file = get_data_file(instrument_spec["rmf"])
    rmf = RedistributionMatrixFile(rmf_file)

    if ptsrc_bkgnd:
        mylog.info("Adding in point-source background.")
        ptsrc_events = make_ptsrc_background(exp_time,
                                             fov,
                                             sky_center,
                                             area=1.2 * arf.max_area,
                                             input_sources=input_sources,
                                             absorb_model=absorb_model,
                                             nH=nH,
                                             prng=prng)
        for key in ["ra", "dec", "energy"]:
            input_events[key].append(ptsrc_events[key])
        input_events["flux"].append(ptsrc_events["flux"])
        input_events["emin"].append(ptsrc_events["energy"].min())
        input_events["emax"].append(ptsrc_events["energy"].max())
        input_events["src_names"].append("ptsrc_bkgnd")
        events, event_params = generate_events(input_events,
                                               exp_time,
                                               instrument,
                                               sky_center,
                                               no_dither=no_dither,
                                               dither_params=dither_params,
                                               roll_angle=roll_angle,
                                               subpixel_res=subpixel_res,
                                               aimpt_shift=aimpt_shift,
                                               prng=prng)
        mylog.info(f"Generated {events['energy'].size} photons from "
                   f"the point-source background.")
    else:
        nx = instrument_spec["num_pixels"]
        plate_scale = instrument_spec["fov"] / nx / 60.0
        plate_scale_arcsec = plate_scale * 3600.0
        if aimpt_shift is None:
            aimpt_shift = np.zeros(2)
        aimpt_shift = ensure_numpy_array(aimpt_shift).astype('float64')
        aimpt_shift /= plate_scale_arcsec
        events = defaultdict(list)
        if not instrument_spec["dither"]:
            dither_on = False
        else:
            dither_on = not no_dither
        if dither_params is None:
            dither_params = [8.0, 8.0, 1000.0, 707.0]
        dither_dict = {
            "x_amp": dither_params[0],
            "y_amp": dither_params[1],
            "x_period": dither_params[2],
            "y_period": dither_params[3],
            "dither_on": dither_on,
            "plate_scale": instrument_spec["fov"] / nx * 60.0
        }
        event_params = {
            "exposure_time": exp_time,
            "fov": instrument_spec["fov"],
            "num_pixels": nx,
            "pix_center": np.array([0.5 * (2 * nx + 1)] * 2),
            "channel_type": rmf.header["CHANTYPE"],
            "sky_center": sky_center,
            "dither_params": dither_dict,
            "plate_scale": plate_scale,
            "chan_lim": [rmf.cmin, rmf.cmax],
            "rmf": rmf_file,
            "arf": arf_file,
            "telescope": rmf.header["TELESCOP"],
            "instrument": instrument_spec['name'],
            "mission": rmf.header.get("MISSION", ""),
            "nchan": rmf.n_ch,
            "roll_angle": roll_angle,
            "aimpt_coords": instrument_spec["aimpt_coords"],
            "aimpt_shift": aimpt_shift
        }

    if "chips" not in event_params:
        event_params["chips"] = instrument_spec["chips"]

    if foreground:
        mylog.info("Adding in astrophysical foreground.")
        bkg_events = make_foreground(event_params, arf, rmf, prng=prng)
        for key in bkg_events:
            events[key] = np.concatenate([events[key], bkg_events[key]])
    if instr_bkgnd and instrument_spec["bkgnd"] is not None:
        mylog.info("Adding in instrumental background.")
        bkg_events = make_instrument_background(instrument_spec,
                                                event_params,
                                                rmf,
                                                prng=prng)
        for key in bkg_events:
            events[key] = np.concatenate([events[key], bkg_events[key]])

    return events, event_params
示例#8
0
def generate_events(source,
                    exp_time,
                    instrument,
                    sky_center,
                    no_dither=False,
                    dither_params=None,
                    roll_angle=0.0,
                    subpixel_res=False,
                    aimpt_shift=None,
                    prng=None):
    """
    Take unconvolved events and convolve them with instrumental responses. This 
    function does the following:

    1. Determines which events are observed using the ARF
    2. Pixelizes the events, applying PSF effects and dithering
    3. Determines energy channels using the RMF

    This function is not meant to be called by the end-user but is used by
    the :func:`~soxs.instrument.instrument_simulator` function.

    Parameters
    ----------
    input_events : string, dict, or None
        The unconvolved events to be used as input. Can be one of the
        following:
        1. The name of a SIMPUT catalog file.
        2. A Python dictionary containing the following items:
        "ra": A NumPy array of right ascension values in degrees.
        "dec": A NumPy array of declination values in degrees.
        "energy": A NumPy array of energy values in keV.
        "flux": The flux of the entire source, in units of erg/cm**2/s.
    out_file : string
        The name of the event file to be written.
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time to use, in seconds. 
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. 
    sky_center : array, tuple, or list
        The center RA, Dec coordinates of the observation, in degrees.
    no_dither : boolean, optional
        If True, turn off dithering entirely. Default: False
    dither_params : array-like of floats, optional
        The parameters to use to control the size and period of the dither
        pattern. The first two numbers are the dither amplitude in x and y
        detector coordinates in arcseconds, and the second two numbers are
        the dither period in x and y detector coordinates in seconds. 
        Default: [8.0, 8.0, 1000.0, 707.0].
    roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The roll angle of the observation in degrees. Default: 0.0
    subpixel_res : boolean, optional
        If True, event positions are not randomized within the pixels 
        within which they are detected. Default: False
    aimpt_shift : array-like, optional
        A two-float array-like object which shifts the aimpoint on the 
        detector from the nominal position. Units are in arcseconds.
        Default: None, which results in no shift from the nominal aimpoint. 
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 
    """
    exp_time = parse_value(exp_time, "s")
    roll_angle = parse_value(roll_angle, "deg")
    prng = parse_prng(prng)
    if source is None:
        source_list = []
    elif isinstance(source, dict):
        parameters = {}
        for key in ["flux", "emin", "emax", "src_names"]:
            parameters[key] = source[key]
        source_list = []
        for i in range(len(parameters["flux"])):
            phlist = SimputPhotonList(source["ra"][i], source["dec"][i],
                                      source["energy"][i],
                                      parameters['flux'][i],
                                      parameters['src_names'][i])
            source_list.append(phlist)
    elif isinstance(source, str):
        # Assume this is a SIMPUT catalog
        source_list, parameters = read_simput_catalog(source)

    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError(
            f"Instrument {instrument} is not in the instrument registry!")
    if not instrument_spec["imaging"]:
        raise RuntimeError(f"Instrument '{instrument_spec['name']}' is not "
                           f"designed for imaging observations!")

    arf_file = get_data_file(instrument_spec["arf"])
    rmf_file = get_data_file(instrument_spec["rmf"])
    arf = AuxiliaryResponseFile(arf_file)
    rmf = RedistributionMatrixFile(rmf_file)

    nx = instrument_spec["num_pixels"]
    plate_scale = instrument_spec["fov"] / nx / 60.  # arcmin to deg
    plate_scale_arcsec = plate_scale * 3600.0

    if aimpt_shift is None:
        aimpt_shift = np.zeros(2)
    aimpt_shift = ensure_numpy_array(aimpt_shift).astype('float64')
    aimpt_shift /= plate_scale_arcsec

    if not instrument_spec["dither"]:
        dither_on = False
    else:
        dither_on = not no_dither
    if dither_params is None:
        dither_params = [8.0, 8.0, 1000.0, 707.0]
    dither_dict = {
        "x_amp": dither_params[0],
        "y_amp": dither_params[1],
        "x_period": dither_params[2],
        "y_period": dither_params[3],
        "dither_on": dither_on,
        "plate_scale": plate_scale_arcsec
    }

    event_params = {
        "exposure_time": exp_time,
        "arf": arf.filename,
        "sky_center": sky_center,
        "pix_center": np.array([0.5 * (2 * nx + 1)] * 2),
        "num_pixels": nx,
        "plate_scale": plate_scale,
        "rmf": rmf.filename,
        "channel_type": rmf.chan_type,
        "telescope": rmf.header["TELESCOP"],
        "instrument": instrument_spec['name'],
        "mission": rmf.header.get("MISSION", ""),
        "nchan": rmf.n_ch,
        "roll_angle": roll_angle,
        "fov": instrument_spec["fov"],
        "chan_lim": [rmf.cmin, rmf.cmax],
        "chips": instrument_spec["chips"],
        "dither_params": dither_dict,
        "aimpt_coords": instrument_spec["aimpt_coords"],
        "aimpt_shift": aimpt_shift
    }

    # Set up WCS

    w = pywcs.WCS(naxis=2)
    w.wcs.crval = event_params["sky_center"]
    w.wcs.crpix = event_params["pix_center"]
    w.wcs.cdelt = [-plate_scale, plate_scale]
    w.wcs.ctype = ["RA---TAN", "DEC--TAN"]
    w.wcs.cunit = ["deg"] * 2

    # Determine rotation matrix
    rot_mat = get_rot_mat(roll_angle)

    # Set up PSF
    psf_type = instrument_spec["psf"][0]
    psf_class = psf_model_registry[psf_type]
    psf = psf_class(instrument_spec, prng=prng)

    all_events = defaultdict(list)

    for i, src in enumerate(source_list):

        mylog.info(
            f"Detecting events from source {parameters['src_names'][i]}")

        # Step 1: Use ARF to determine which photons are observed

        mylog.info(f"Applying energy-dependent effective area from "
                   f"{os.path.split(arf.filename)[-1]}.")
        refband = [parameters["emin"][i], parameters["emax"][i]]
        if src.src_type == "phlist":
            events = arf.detect_events_phlist(src.events.copy(),
                                              exp_time,
                                              parameters["flux"][i],
                                              refband,
                                              prng=prng)
        elif src.src_type.endswith("spectrum"):
            events = arf.detect_events_spec(src, exp_time, refband, prng=prng)

        n_evt = events["energy"].size

        if n_evt == 0:
            mylog.warning("No events were observed for this source!!!")
        else:

            # Step 2: Assign pixel coordinates to events. Apply dithering and
            # PSF. Clip events that don't fall within the detection region.

            mylog.info("Pixeling events.")

            # Convert RA, Dec to pixel coordinates
            xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1)

            xpix -= event_params["pix_center"][0]
            ypix -= event_params["pix_center"][1]

            events.pop("ra")
            events.pop("dec")

            n_evt = xpix.size

            # Rotate physical coordinates to detector coordinates

            det = np.dot(rot_mat, np.array([xpix, ypix]))
            detx = det[0, :] + event_params["aimpt_coords"][0] + aimpt_shift[0]
            dety = det[1, :] + event_params["aimpt_coords"][1] + aimpt_shift[1]

            # Add times to events
            events['time'] = prng.uniform(size=n_evt,
                                          low=0.0,
                                          high=event_params["exposure_time"])

            # Apply dithering

            x_offset, y_offset = perform_dither(events["time"], dither_dict)

            detx -= x_offset
            dety -= y_offset

            # PSF scattering of detector coordinates

            mylog.info(f"Scattering events with a {psf}-based PSF.")
            detx, dety = psf.scatter(detx, dety, events["energy"])

            # Convert detector coordinates to chip coordinates.
            # Throw out events that don't fall on any chip.

            cx = np.trunc(detx) + 0.5 * np.sign(detx)
            cy = np.trunc(dety) + 0.5 * np.sign(dety)

            events["chip_id"] = -np.ones(n_evt, dtype='int')
            for i, chip in enumerate(event_params["chips"]):
                rtype = chip[0]
                args = chip[1:]
                r, _ = create_region(rtype, args, 0.0, 0.0)
                inside = r.contains(PixCoord(cx, cy))
                events["chip_id"][inside] = i
            keep = events["chip_id"] > -1

            mylog.info(f"{n_evt-keep.sum()} events were rejected because "
                       f"they do not fall on any CCD.")
            n_evt = keep.sum()

            if n_evt == 0:
                mylog.warning("No events are within the field "
                              "of view for this source!!!")
            else:

                # Keep only those events which fall on a chip

                for key in events:
                    events[key] = events[key][keep]

                # Convert chip coordinates back to detector coordinates,
                # unless the user has specified that they want subpixel
                # resolution

                if subpixel_res:
                    events["detx"] = detx[keep]
                    events["dety"] = dety[keep]
                else:
                    events["detx"] = cx[keep] + \
                                     prng.uniform(low=-0.5, high=0.5, size=n_evt)
                    events["dety"] = cy[keep] + \
                                     prng.uniform(low=-0.5, high=0.5, size=n_evt)

                # Convert detector coordinates back to pixel coordinates by
                # adding the dither offsets back in and applying the rotation
                # matrix again

                det = np.array([
                    events["detx"] + x_offset[keep] -
                    event_params["aimpt_coords"][0] - aimpt_shift[0],
                    events["dety"] + y_offset[keep] -
                    event_params["aimpt_coords"][1] - aimpt_shift[1]
                ])
                pix = np.dot(rot_mat.T, det)

                events["xpix"] = pix[0, :] + event_params['pix_center'][0]
                events["ypix"] = pix[1, :] + event_params['pix_center'][1]

        if n_evt > 0:
            for key in events:
                all_events[key] = np.concatenate(
                    [all_events[key], events[key]])

    if len(all_events["energy"]) == 0:
        mylog.warning("No events from any of the sources in "
                      "the catalog were detected!")
        for key in [
                "xpix", "ypix", "detx", "dety", "time", "chip_id",
                event_params["channel_type"]
        ]:
            all_events[key] = np.array([])
    else:
        # Step 4: Scatter energies with RMF
        mylog.info(f"Scattering energies with "
                   f"RMF {os.path.split(rmf.filename)[-1]}.")
        all_events = rmf.scatter_energies(all_events, prng=prng)

    return all_events, event_params