def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0) return alpha, sx, sy, m
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--output_dir", type="string", default="./", help="Output directory") parser.add_option("--ave2D", type="string", default=False, help="Write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string", default=False, help="Write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string", default=False, help="Write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string", default=False, help="Compute 3D variability (time consuming!)") parser.add_option( "--img_per_grp", type="int", default=100, help="Number of neighbouring projections.(Default is 100)") parser.add_option( "--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)") #parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option( "--npad", type="int", default=2, help= "Number of time to pad the original images.(Default is 2 times padding)" ) parser.add_option("--sym", type="string", default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option( "--fl", type="float", default=0.0, help= "Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)" ) parser.add_option( "--aa", type="float", default=0.02, help= "Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option( "--VAR", action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)") parser.add_option( "--decimate", type="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)") parser.add_option( "--window", type="int", default=0, help= "Target image size relative to original image size. (Default value is zero.)" ) #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") #parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option( "--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") parser.add_option("--overhead", type="float", default=0.5, help="python overhead per CPU.") (options, args) = parser.parse_args() ##### from mpi import mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX #from mpi import * from sp_applications import MPI_start_end from sp_reconstruction import recons3d_em, recons3d_em_MPI from sp_reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from sp_utilities import print_begin_msg, print_end_msg, print_msg from sp_utilities import read_text_row, get_image, get_im, wrap_mpi_send, wrap_mpi_recv from sp_utilities import bcast_EMData_to_all, bcast_number_to_all from sp_utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict # Set up global variables related to bdb cache if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() # Set up global variables related to ERROR function sp_global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ if RUNNING_UNDER_MPI: sp_global_def.MPI = True if options.output_dir == "./": current_output_dir = os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize: if mpi.mpi_comm_size(MPI_COMM_WORLD) > 1: ERROR("Cannot use more than one CPU for symmetry preparation") if not os.path.exists(current_output_dir): os.makedirs(current_output_dir) sp_global_def.write_command(current_output_dir) from sp_logger import Logger, BaseLogger_Files if os.path.exists(os.path.join(current_output_dir, "log.txt")): os.remove(os.path.join(current_output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if (sym == "c1"): ERROR("There is no need to symmetrize stack for C1 symmetry") line = "" for a in sys.argv: line += " " + a log_main.add(line) if (instack[:4] != "bdb:"): #if output_dir =="./": stack = "bdb:data" stack = "bdb:" + current_output_dir + "/data" delete_bdb(stack) junk = cmdexecute("sp_cpy.py " + instack + " " + stack) else: stack = instack qt = EMUtil.get_all_attributes(stack, 'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None] * na for k in range(ks): #Qfile = "Q%1d"%k #if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = os.path.join(current_output_dir, "Q%1d" % k) #delete_bdb("bdb:Q%1d"%k) delete_bdb("bdb:" + Qfile) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = cmdexecute("e2bdb.py " + stack + " --makevstack=bdb:" + Qfile) #DB = db_open_dict("bdb:Q%1d"%k) DB = db_open_dict("bdb:" + Qfile) for i in range(na): ut = qt[i] * ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() #if options.output_dir =="./": delete_bdb("bdb:sdata") delete_bdb("bdb:" + current_output_dir + "/" + "sdata") #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:" + current_output_dir + "/" + "sdata" sxprint(sdata) junk = cmdexecute("e2bdb.py " + current_output_dir + " --makevstack=" + sdata + " --filt=Q") #junk = cmdexecute("ls EMAN2DB/sdata*") #a = get_im("bdb:sdata") a = get_im(sdata) a.set_attr("variabilitysymmetry", sym) #a.write_image("bdb:sdata") a.write_image(sdata) else: from sp_fundamentals import window2d myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 shared_comm = mpi_comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL) myid_on_node = mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi_comm_split( MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = get_colors_and_subsets(main_node, MPI_COMM_WORLD, myid, \ shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm) overhead_loading = options.overhead * number_of_proc #memory_per_node = options.memory_per_node #if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return t0 = time() # obsolete flags options.MPI = True #options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", myid=myid) #if options.VAR and options.SND: # ERROR( "Only one of var and SND can be set!",myid=myid ) if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR( "When VAR is set, the program cannot output ave2D, ave3D or var2D", myid=myid) #if options.SND and (options.ave2D or options.ave3D): # ERROR( "When SND is set, the program cannot output ave2D or ave3D", myid=myid ) #if options.nvec > 0 : # ERROR( "PCA option not implemented", myid=myid ) #if options.nvec > 0 and options.ave3D == None: # ERROR( "When doing PCA analysis, one must set ave3D", myid=myid ) if current_decimate > 1.0 or current_decimate < 0.0: ERROR("Decimate rate should be a value between 0.0 and 1.0", myid=myid) if current_window < 0.0: ERROR("Target window size should be always larger than zero", myid=myid) if myid == main_node: img = get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if (min(nx, ny) < current_window): keepgoing = 0 keepgoing = bcast_number_to_all(keepgoing, main_node, MPI_COMM_WORLD) if keepgoing == 0: ERROR( "The target window size cannot be larger than the size of decimated image", myid=myid) import string options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not os.path.exists(current_output_dir): os.makedirs(current_output_dir ) # Never delete output_dir in the program! img_per_grp = options.img_per_grp #nvec = options.nvec radiuspca = options.radiuspca from sp_logger import Logger, BaseLogger_Files #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line += " " + a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s" % options.sym) log_main.add("Input stack : %s" % stack) log_main.add("Output_dir : %s" % current_output_dir) if options.ave3D: log_main.add("Ave3d : %s" % options.ave3D) if options.var3D: log_main.add("Var3d : %s" % options.var3D) if options.ave2D: log_main.add("Ave2D : %s" % options.ave2D) if options.var2D: log_main.add("Var2D : %s" % options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d" % options.img_per_grp) log_main.add("Image decimate rate : %4.3f" % current_decimate) log_main.add("Low pass filter : %4.3f" % options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add( "Current low pass filter is equivalent to cutoff frequency %4.3f for original image size" % round((current_fl * current_decimate), 3)) log_main.add("Window size : %5d " % current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1": imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if (i != options.sym): ERROR( "The symmetry provided does not agree with the symmetry of the input stack", myid=myid) except: ERROR( "Input stack is not prepared for symmetry, please follow instructions", myid=myid) from sp_utilities import get_symt i = len(get_symt(options.sym)) if ((nima / i) * i != nima): ERROR( "The length of the input stack is incorrect for symmetry processing", myid=myid) symbaselen = nima / i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) nnxo = bcast_number_to_all(nnxo) nnyo = bcast_number_to_all(nnyo) if current_window > max(nx, ny): ERROR("Window size is larger than the original image size") if current_decimate == 1.: if current_window != 0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx * current_decimate + 0.5) ny = int(ny * current_decimate + 0.5) else: nx = int(current_window * current_decimate + 0.5) ny = nx symbaselen = bcast_number_to_all(symbaselen) # check FFT prime number from sp_fundamentals import smallprime is_fft_friendly = (nx == smallprime(nx)) if not is_fft_friendly: if myid == main_node: log_main.add( "The target image size is not a product of small prime numbers" ) log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.: nx = smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d." % current_window) else: if current_window == 0: nx = smallprime(int(nx * current_decimate + 0.5)) current_decimate = float(nx) / nnxo ny = nx if (myid == main_node): log_main.add("The decimate rate is updated to %f." % current_decimate) else: nx = smallprime( int(current_window * current_decimate + 0.5)) ny = nx current_window = int(nx / current_decimate + 0.5) if (myid == main_node): log_main.add("The window size is updated to %d." % current_window) if myid == main_node: log_main.add("The target image size is %d" % nx) if radiuspca == -1: radiuspca = nx / 2 - 2 if myid == main_node: log_main.add("%-70s: %d\n" % ("Number of projection", nima)) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from sp_projection import prep_vol, prgs from sp_statistics import im_diff from sp_utilities import get_im, model_circle, get_params_proj, set_params_proj from sp_utilities import get_ctf, generate_ctf from sp_filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: # 2D variance images have no shifts #varList = EMData.read_images(stack, range(img_begin, img_end)) from EMAN2 import Region for index_of_particle in range(img_begin, img_end): image = get_im(stack, index_of_proj) if current_window > 0: varList.append( fdecimate( window2d(image, current_window, current_window), nx, ny)) else: varList.append(fdecimate(image, nx, ny)) else: from sp_utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from sp_utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from sp_utilities import model_blank, nearest_proj, model_circle, write_text_row, wrap_mpi_gatherv from sp_applications import pca from sp_statistics import avgvar, avgvar_ctf, ccc from sp_filter import filt_tanl from sp_morphology import threshold, square_root from sp_projection import project, prep_vol, prgs from sets import Set from sp_utilities import wrap_mpi_recv, wrap_mpi_bcast, wrap_mpi_send import numpy as np if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in range(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x * 10000 + psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() log_main.add( "%-70s: %d\n" % ("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add("Number of images per group: %d" % img_per_grp) log_main.add("Now grouping projections") proj_angles.sort() proj_angles_list = np.full((nima, 4), 0.0, dtype=np.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = wrap_mpi_bcast(proj_angles_list, main_node, MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([ proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3]) ]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n" % ("Finding neighboring projections lasted [s]", time() - t2)) log_main.add("%-70s: %d\n" % ("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]" % ((time() - t2) / 60.)) log_main.add("Number of groups on main node: ", len(proj_list)) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] #if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len( all_proj) # all neighborhood set for assigned to myid pnumber = len(proj_list) * 2. + img_per_grp # aveList and varList tnumber = dnumber + pnumber vol_size2 = nx**3 * 4. * 8 / 1.e9 vol_size1 = 2. * nnxo**3 * 4. * 8 / 1.e9 proj_size = nnxo * nnyo * len( proj_list) * 4. * 2. / 1.e9 # both aveList and varList orig_data_size = nnxo * nnyo * 4. * tnumber / 1.e9 reduced_data_size = nx * nx * 4. * tnumber / 1.e9 full_data = np.full((number_of_proc, 2), -1., dtype=np.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: wrap_mpi_send(full_data, main_node, MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = wrap_mpi_recv(iproc, MPI_COMM_WORLD) full_data[np.where(dummy > -1)] = dummy[np.where( dummy > -1)] del dummy mpi_barrier(MPI_COMM_WORLD) full_data = wrap_mpi_bcast(full_data, main_node, MPI_COMM_WORLD) # find the CPU with heaviest load minindx = np.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add( "Nx: current image size = %d. Decimated by %f from %d" % (nx, current_decimate, nnxo)) else: log_main.add( "Nx: current image size = %d. Windowed to %d, and decimated by %f from %d" % (nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add( "Img_per_grp: user defined image per group for averaging = %d" % img_per_grp) log_main.add( "Overhead: total python overhead memory consumption = %f" % overhead_loading) log_main.add("Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]"%\ (total_mem[1] + overhead_loading)) del full_data mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add( "Begin reading and preprocessing images on processor. Wait... " ) ttt = time() #imgdata = EMData.read_images(stack, all_proj) imgdata = [None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): #image = get_im(stack, all_proj[index_of_proj]) if (current_window > 0): imgdata[index_of_proj] = fdecimate( window2d(get_im(stack, all_proj[index_of_proj]), current_window, current_window), nx, ny) else: imgdata[index_of_proj] = fdecimate( get_im(stack, all_proj[index_of_proj]), nx, ny) if (current_decimate > 0.0 and options.CTF): ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = ctf.apix / current_decimate imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj % 100 == 0: log_main.add(" ...... %6.2f%% " % (index_of_proj / float(len(all_proj)) * 100.)) mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m" % ((time() - ttt) / 60.)) log_main.add("Wait untill reading on all CPUs done...") ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from sp_applications import prepare_2d_forPCA from sp_utilities import model_blank from EMAN2 import Transform if not options.no_norm: mask = model_circle(nx / 2 - 2, nx, nx) if options.CTF: from sp_utilities import pad from sp_filter import filt_ctf from sp_filter import filt_tanl if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time() inner = nx // 2 - 4 outer = inner + 2 xform_proj_for_2D = [None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = Util.get_transform_params(imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = dpar["phi"], dpar[ "theta"], dpar[ "psi"], -dpar["tx"] * current_decimate, -dpar[ "ty"] * current_decimate grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = Util.get_transform_params(imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW( cpar["phi"], cpar["theta"], cpar["psi"], -cpar["tx"] * current_decimate, -cpar["ty"] * current_decimate, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, 180 - (phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(180 - (phiM - cpar["phi"])), 0.0, 0.0, 1.0) imgdata[mj].set_attr( "xform.align2d", Transform({ "type": "2D", "alpha": alpha, "tx": sx, "ty": sy, "mirror": mirror, "scale": 1.0 })) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = Util.infomask( grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = aves_wiener(grp_imgdata, SNR=1.0e5, interpolation_method="linear") else: ave, var = ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = square_root(threshold(var)) set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] ''' if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in range(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ ''' if (myid == heavy_load_myid) and (i % 100 == 0): log_main.add(" ......%6.2f%% " % (i / float(len(proj_list)) * 100.)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi_barrier(MPI_COMM_WORLD) if (myid == heavy_load_myid): log_main.add("Computing aveList and varList took %12.1f [m]" % ((time() - ttt) / 60.)) xform_proj_for_2D = wrap_mpi_gatherv(xform_proj_for_2D, main_node, MPI_COMM_WORLD) if (myid == main_node): write_text_row([str(entry) for entry in xform_proj_for_2D], os.path.join(current_output_dir, "params.txt")) del xform_proj_for_2D mpi_barrier(MPI_COMM_WORLD) if options.ave2D: from sp_fundamentals import fpol from sp_applications import header if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image( os.path.join(current_output_dir, options.ave2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im + i + 70000) """ nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol = fpol(ave, nx, nx, 1) tmpvol.write_image( os.path.join(current_output_dir, options.ave2D), km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) """ if myid == main_node: header(os.path.join(current_output_dir, options.ave2D), params='xform.projection', fimport=os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.ave3D: from sp_fundamentals import fpol t5 = time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = resample(ave3D, 1. / current_decimate) ave3D = fpol(ave3D, nnxo, nnxo, nnxo) # always to the orignal image size set_pixel_size(ave3D, 1.0) ave3D.write_image( os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]" % ((time() - t5) / 60.0)) log_main.add("%-70s: %s\n" % ("The reconstructed ave3D is saved as ", options.ave3D)) mpi_barrier(MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList ''' if nvec > 0: for k in range(nvec): if myid == main_node:log_main.add("Reconstruction eigenvolumes", k) cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image(os.path.join(options.outpout_dir, "eig3d_%03d.hdf"%(k, ITER))) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in range(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: u = int(u[0]) log_main.add(" Eigenvector: ",k," number changed ",int(icont[0])) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d ''' if options.ave3D: del ave3D if options.var2D: from sp_fundamentals import fpol from sp_applications import header if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(varList)): tmpvol = fpol(varList[im], nx, nx, 1) tmpvol.write_image( os.path.join(current_output_dir, options.var2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im + i + 70000) tmpvol = fpol(ave, nx, nx, 1) tmpvol.write_image( os.path.join(current_output_dir, options.var2D), km) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(varList)): send_EMData(varList[im], main_node, im + myid + 70000) # What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if myid == main_node: from sp_applications import header header(os.path.join(current_output_dir, options.var2D), params='xform.projection', fimport=os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from sp_fundamentals import fpol if current_decimate != 1.0: res = resample(res, 1. / current_decimate) res = fpol(res, nnxo, nnxo, nnxo) set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add( "%-70s: %s\n" % ("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]" % ((time() - t6) / 60.0)) log_main.add("Total computation time %f12.1 [m]" % ((time() - t0) / 60.0)) log_main.add("sx3dvariability finishes") if RUNNING_UNDER_MPI: sp_global_def.MPI = False sp_global_def.BATCH = False
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = sp_utilities.compose_transform2( 0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = sp_utilities.compose_transform2( 0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0) return alpha, sx, sy, m progname = optparse.os.path.basename(sys.argv[0]) usage = ( progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" ) parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option("--output_dir", type="string", default="./", help="Output directory") parser.add_option( "--ave2D", type="string", default=False, help="Write to the disk a stack of 2D averages", ) parser.add_option( "--var2D", type="string", default=False, help="Write to the disk a stack of 2D variances", ) parser.add_option( "--ave3D", type="string", default=False, help="Write to the disk reconstructed 3D average", ) parser.add_option( "--var3D", type="string", default=False, help="Compute 3D variability (time consuming!)", ) parser.add_option( "--img_per_grp", type="int", default=100, help="Number of neighbouring projections.(Default is 100)", ) parser.add_option( "--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)", ) # parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option( "--npad", type="int", default=2, help= "Number of time to pad the original images.(Default is 2 times padding)", ) parser.add_option("--sym", type="string", default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option( "--fl", type="float", default=0.0, help= "Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)", ) parser.add_option( "--aa", type="float", default=0.02, help= "Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)", ) parser.add_option( "--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)", ) # parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") # parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) # parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) # parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) # parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option( "--VAR", action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)", ) parser.add_option( "--decimate", type="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)", ) parser.add_option( "--window", type="int", default=0, help= "Target image size relative to original image size. (Default value is zero.)", ) # parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") # parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option( "--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)", ) parser.add_option("--overhead", type="float", default=0.5, help="python overhead per CPU.") (options, args) = parser.parse_args() ##### # from mpi import * # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 # Set up global variables related to bdb cache if sp_global_def.CACHE_DISABLE: sp_utilities.disable_bdb_cache() # Set up global variables related to ERROR function sp_global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in optparse.os.environ if RUNNING_UNDER_MPI: sp_global_def.MPI = True if options.output_dir == "./": current_output_dir = optparse.os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize: if mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) > 1: sp_global_def.ERROR( "Cannot use more than one CPU for symmetry preparation") if not optparse.os.path.exists(current_output_dir): optparse.os.makedirs(current_output_dir) sp_global_def.write_command(current_output_dir) if optparse.os.path.exists( optparse.os.path.join(current_output_dir, "log.txt")): optparse.os.remove( optparse.os.path.join(current_output_dir, "log.txt")) log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = optparse.os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if sym == "c1": sp_global_def.ERROR( "There is no need to symmetrize stack for C1 symmetry") line = "" for a in sys.argv: line += " " + a log_main.add(line) if instack[:4] != "bdb:": # if output_dir =="./": stack = "bdb:data" stack = "bdb:" + current_output_dir + "/data" sp_utilities.delete_bdb(stack) junk = sp_utilities.cmdexecute("sp_cpy.py " + instack + " " + stack) else: stack = instack qt = EMAN2_cppwrap.EMUtil.get_all_attributes(stack, "xform.projection") na = len(qt) ts = sp_utilities.get_symt(sym) ks = len(ts) angsa = [None] * na for k in range(ks): # Qfile = "Q%1d"%k # if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = optparse.os.path.join(current_output_dir, "Q%1d" % k) # delete_bdb("bdb:Q%1d"%k) sp_utilities.delete_bdb("bdb:" + Qfile) # junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = sp_utilities.cmdexecute("e2bdb.py " + stack + " --makevstack=bdb:" + Qfile) # DB = db_open_dict("bdb:Q%1d"%k) DB = EMAN2db.db_open_dict("bdb:" + Qfile) for i in range(na): ut = qt[i] * ts[k] DB.set_attr(i, "xform.projection", ut) # bt = ut.get_params("spider") # angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] # write_text_row(angsa, 'ptsma%1d.txt'%k) # junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) # junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() # if options.output_dir =="./": delete_bdb("bdb:sdata") sp_utilities.delete_bdb("bdb:" + current_output_dir + "/" + "sdata") # junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:" + current_output_dir + "/" + "sdata" sp_global_def.sxprint(sdata) junk = sp_utilities.cmdexecute("e2bdb.py " + current_output_dir + " --makevstack=" + sdata + " --filt=Q") # junk = cmdexecute("ls EMAN2DB/sdata*") # a = get_im("bdb:sdata") a = sp_utilities.get_im(sdata) a.set_attr("variabilitysymmetry", sym) # a.write_image("bdb:sdata") a.write_image(sdata) else: myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) number_of_proc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) main_node = 0 shared_comm = mpi.mpi_comm_split_type(mpi.MPI_COMM_WORLD, mpi.MPI_COMM_TYPE_SHARED, 0, mpi.MPI_INFO_NULL) myid_on_node = mpi.mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi.mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi.mpi_comm_split( mpi.MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = sp_utilities.get_colors_and_subsets( main_node, mpi.MPI_COMM_WORLD, myid, shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm, ) overhead_loading = options.overhead * number_of_proc # memory_per_node = options.memory_per_node # if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: sp_global_def.sxprint("Usage: " + usage) sp_global_def.sxprint("Please run '" + progname + " -h' for detailed options") sp_global_def.ERROR( "Invalid number of parameters used. Please see usage information above." ) return t0 = time.time() # obsolete flags options.MPI = True # options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: sp_global_def.ERROR( "Fall off has to be given for the low-pass filter", myid=myid) # if options.VAR and options.SND: # ERROR( "Only one of var and SND can be set!",myid=myid ) if options.VAR and (options.ave2D or options.ave3D or options.var2D): sp_global_def.ERROR( "When VAR is set, the program cannot output ave2D, ave3D or var2D", myid=myid, ) # if options.SND and (options.ave2D or options.ave3D): # ERROR( "When SND is set, the program cannot output ave2D or ave3D", myid=myid ) # if options.nvec > 0 : # ERROR( "PCA option not implemented", myid=myid ) # if options.nvec > 0 and options.ave3D == None: # ERROR( "When doing PCA analysis, one must set ave3D", myid=myid ) if current_decimate > 1.0 or current_decimate < 0.0: sp_global_def.ERROR( "Decimate rate should be a value between 0.0 and 1.0", myid=myid) if current_window < 0.0: sp_global_def.ERROR( "Target window size should be always larger than zero", myid=myid) if myid == main_node: img = sp_utilities.get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if min(nx, ny) < current_window: keepgoing = 0 keepgoing = sp_utilities.bcast_number_to_all(keepgoing, main_node, mpi.MPI_COMM_WORLD) if keepgoing == 0: sp_global_def.ERROR( "The target window size cannot be larger than the size of decimated image", myid=myid, ) options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not optparse.os.path.exists(current_output_dir): optparse.os.makedirs( current_output_dir ) # Never delete output_dir in the program! img_per_grp = options.img_per_grp # nvec = options.nvec radiuspca = options.radiuspca # if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = optparse.os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line += " " + a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s" % options.sym) log_main.add("Input stack : %s" % stack) log_main.add("Output_dir : %s" % current_output_dir) if options.ave3D: log_main.add("Ave3d : %s" % options.ave3D) if options.var3D: log_main.add("Var3d : %s" % options.var3D) if options.ave2D: log_main.add("Ave2D : %s" % options.ave2D) if options.var2D: log_main.add("Var2D : %s" % options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d" % options.img_per_grp) log_main.add("Image decimate rate : %4.3f" % current_decimate) log_main.add("Low pass filter : %4.3f" % options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add( "Current low pass filter is equivalent to cutoff frequency %4.3f for original image size" % round((current_fl * current_decimate), 3)) log_main.add("Window size : %5d " % current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMAN2_cppwrap.EMUtil.get_image_count(stack) img = sp_utilities.get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1": imgdata = sp_utilities.get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if i != options.sym: sp_global_def.ERROR( "The symmetry provided does not agree with the symmetry of the input stack", myid=myid, ) except: sp_global_def.ERROR( "Input stack is not prepared for symmetry, please follow instructions", myid=myid, ) i = len(sp_utilities.get_symt(options.sym)) if (old_div(nima, i)) * i != nima: sp_global_def.ERROR( "The length of the input stack is incorrect for symmetry processing", myid=myid, ) symbaselen = old_div(nima, i) else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = sp_utilities.bcast_number_to_all(nima) nx = sp_utilities.bcast_number_to_all(nx) ny = sp_utilities.bcast_number_to_all(ny) nnxo = sp_utilities.bcast_number_to_all(nnxo) nnyo = sp_utilities.bcast_number_to_all(nnyo) if current_window > max(nx, ny): sp_global_def.ERROR( "Window size is larger than the original image size") if current_decimate == 1.0: if current_window != 0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx * current_decimate + 0.5) ny = int(ny * current_decimate + 0.5) else: nx = int(current_window * current_decimate + 0.5) ny = nx symbaselen = sp_utilities.bcast_number_to_all(symbaselen) # check FFT prime number is_fft_friendly = nx == sp_fundamentals.smallprime(nx) if not is_fft_friendly: if myid == main_node: log_main.add( "The target image size is not a product of small prime numbers" ) log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.0: nx = sp_fundamentals.smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d." % current_window) else: if current_window == 0: nx = sp_fundamentals.smallprime( int(nx * current_decimate + 0.5)) current_decimate = old_div(float(nx), nnxo) ny = nx if myid == main_node: log_main.add("The decimate rate is updated to %f." % current_decimate) else: nx = sp_fundamentals.smallprime( int(current_window * current_decimate + 0.5)) ny = nx current_window = int(old_div(nx, current_decimate) + 0.5) if myid == main_node: log_main.add("The window size is updated to %d." % current_window) if myid == main_node: log_main.add("The target image size is %d" % nx) if radiuspca == -1: radiuspca = old_div(nx, 2) - 2 if myid == main_node: log_main.add("%-70s: %d\n" % ("Number of projection", nima)) img_begin, img_end = sp_applications.MPI_start_end( nima, number_of_proc, myid) """Multiline Comment0""" """ Comments from adnan, replace index_of_proj to index_of_particle, index_of_proj was not defined also varList is not defined not made an empty list there """ if options.VAR: # 2D variance images have no shifts varList = [] # varList = EMData.read_images(stack, range(img_begin, img_end)) for index_of_particle in range(img_begin, img_end): image = sp_utilities.get_im(stack, index_of_particle) if current_window > 0: varList.append( sp_fundamentals.fdecimate( sp_fundamentals.window2d(image, current_window, current_window), nx, ny, )) else: varList.append(sp_fundamentals.fdecimate(image, nx, ny)) else: if myid == main_node: t1 = time.time() proj_angles = [] aveList = [] tab = EMAN2_cppwrap.EMUtil.get_all_attributes( stack, "xform.projection") for i in range(nima): t = tab[i].get_params("spider") phi = t["phi"] theta = t["theta"] psi = t["psi"] x = theta if x > 90.0: x = 180.0 - x x = x * 10000 + psi proj_angles.append([x, t["phi"], t["theta"], t["psi"], i]) t2 = time.time() log_main.add( "%-70s: %d\n" % ("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add("Number of images per group: %d" % img_per_grp) log_main.add("Now grouping projections") proj_angles.sort() proj_angles_list = numpy.full((nima, 4), 0.0, dtype=numpy.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = sp_utilities.wrap_mpi_bcast( proj_angles_list, main_node, mpi.MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([ proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3]), ]) del proj_angles_list proj_list, mirror_list = sp_utilities.nearest_proj( proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = [] for im in proj_list: for jm in im: all_proj.append(proj_angles[jm][3]) all_proj = list(set(all_proj)) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n" % ("Finding neighboring projections lasted [s]", time.time() - t2)) log_main.add("%-70s: %d\n" % ("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]" % (old_div((time.time() - t2), 60.0))) log_main.add("Number of groups on main node: ", len(proj_list)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] # if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len( all_proj) # all neighborhood set for assigned to myid pnumber = len(proj_list) * 2.0 + img_per_grp # aveList and varList tnumber = dnumber + pnumber vol_size2 = old_div(nx**3 * 4.0 * 8, 1.0e9) vol_size1 = old_div(2.0 * nnxo**3 * 4.0 * 8, 1.0e9) proj_size = old_div(nnxo * nnyo * len(proj_list) * 4.0 * 2.0, 1.0e9) # both aveList and varList orig_data_size = old_div(nnxo * nnyo * 4.0 * tnumber, 1.0e9) reduced_data_size = old_div(nx * nx * 4.0 * tnumber, 1.0e9) full_data = numpy.full((number_of_proc, 2), -1.0, dtype=numpy.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: sp_utilities.wrap_mpi_send(full_data, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = sp_utilities.wrap_mpi_recv( iproc, mpi.MPI_COMM_WORLD) full_data[numpy.where(dummy > -1)] = dummy[numpy.where( dummy > -1)] del dummy mpi.mpi_barrier(mpi.MPI_COMM_WORLD) full_data = sp_utilities.wrap_mpi_bcast(full_data, main_node, mpi.MPI_COMM_WORLD) # find the CPU with heaviest load minindx = numpy.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add( "Nx: current image size = %d. Decimated by %f from %d" % (nx, current_decimate, nnxo)) else: log_main.add( "Nx: current image size = %d. Windowed to %d, and decimated by %f from %d" % (nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add( "Img_per_grp: user defined image per group for averaging = %d" % img_per_grp) log_main.add( "Overhead: total python overhead memory consumption = %f" % overhead_loading) log_main.add( "Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]" % (total_mem[1] + overhead_loading)) del full_data mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add( "Begin reading and preprocessing images on processor. Wait... " ) ttt = time.time() # imgdata = EMData.read_images(stack, all_proj) imgdata = [None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): # image = get_im(stack, all_proj[index_of_proj]) if current_window > 0: imgdata[index_of_proj] = sp_fundamentals.fdecimate( sp_fundamentals.window2d( sp_utilities.get_im(stack, all_proj[index_of_proj]), current_window, current_window, ), nx, ny, ) else: imgdata[index_of_proj] = sp_fundamentals.fdecimate( sp_utilities.get_im(stack, all_proj[index_of_proj]), nx, ny) if current_decimate > 0.0 and options.CTF: ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = old_div(ctf.apix, current_decimate) imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj % 100 == 0: log_main.add( " ...... %6.2f%% " % (old_div(index_of_proj, float(len(all_proj))) * 100.0)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m" % (old_div( (time.time() - ttt), 60.0))) log_main.add("Wait untill reading on all CPUs done...") """Multiline Comment1""" if not options.no_norm: mask = sp_utilities.model_circle(old_div(nx, 2) - 2, nx, nx) if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time.time() inner = old_div(nx, 2) - 4 outer = inner + 2 xform_proj_for_2D = [None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = EMAN2_cppwrap.Util.get_transform_params( imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = ( dpar["phi"], dpar["theta"], dpar["psi"], -dpar["tx"] * current_decimate, -dpar["ty"] * current_decimate, ) grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = EMAN2_cppwrap.Util.get_transform_params( imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW( cpar["phi"], cpar["theta"], cpar["psi"], -cpar["tx"] * current_decimate, -cpar["ty"] * current_decimate, mirror_list[i][j], ) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, 180 - (phiM - cpar["phi"]), 0.0, 0.0, 1.0, ) else: if mirror == 0: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, -(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, -(180 - (phiM - cpar["phi"])), 0.0, 0.0, 1.0, ) imgdata[mj].set_attr( "xform.align2d", EMAN2_cppwrap.Transform({ "type": "2D", "alpha": alpha, "tx": sx, "ty": sy, "mirror": mirror, "scale": 1.0, }), ) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = EMAN2_cppwrap.Util.infomask( grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] = old_div(grp_imgdata[k], std) if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = sp_filter.filt_tanl( grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = sp_statistics.aves_wiener( grp_imgdata, SNR=1.0e5, interpolation_method="linear") else: ave, var = sp_statistics.ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = sp_morphology.square_root(sp_morphology.threshold(var)) sp_utilities.set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) sp_utilities.set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] """Multiline Comment2""" if (myid == heavy_load_myid) and (i % 100 == 0): log_main.add(" ......%6.2f%% " % (old_div(i, float(len(proj_list))) * 100.0)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("Computing aveList and varList took %12.1f [m]" % (old_div((time.time() - ttt), 60.0))) xform_proj_for_2D = sp_utilities.wrap_mpi_gatherv( xform_proj_for_2D, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: sp_utilities.write_text_row( [str(entry) for entry in xform_proj_for_2D], optparse.os.path.join(current_output_dir, "params.txt"), ) del xform_proj_for_2D mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.ave2D: if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image( optparse.os.path.join( current_output_dir, options.ave2D), km, ) km += 1 else: nl = mpi.mpi_recv( 1, mpi.MPI_INT, i, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) nl = int(nl[0]) for im in range(nl): ave = sp_utilities.recv_EMData( i, im + i + 70000) """Multiline Comment3""" tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.ave2D), km, ) km += 1 else: mpi.mpi_send( len(aveList), 1, mpi.MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) for im in range(len(aveList)): sp_utilities.send_EMData(aveList[im], main_node, im + myid + 70000) """Multiline Comment4""" if myid == main_node: sp_applications.header( optparse.os.path.join(current_output_dir, options.ave2D), params="xform.projection", fimport=optparse.os.path.join(current_output_dir, "params.txt"), ) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.ave3D: t5 = time.time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = sp_reconstruction.recons3d_4nn_MPI( myid, aveList, symmetry=options.sym, npad=options.npad) sp_utilities.bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = sp_fundamentals.resample( ave3D, old_div(1.0, current_decimate)) ave3D = sp_fundamentals.fpol( ave3D, nnxo, nnxo, nnxo) # always to the orignal image size sp_utilities.set_pixel_size(ave3D, 1.0) ave3D.write_image( optparse.os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]" % (old_div((time.time() - t5), 60.0))) log_main.add("%-70s: %s\n" % ("The reconstructed ave3D is saved as ", options.ave3D)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList """Multiline Comment5""" if options.ave3D: del ave3D if options.var2D: if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(varList)): tmpvol = sp_fundamentals.fpol( varList[im], nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.var2D), km, ) km += 1 else: nl = mpi.mpi_recv( 1, mpi.MPI_INT, i, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) nl = int(nl[0]) for im in range(nl): ave = sp_utilities.recv_EMData( i, im + i + 70000) tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.var2D), km, ) km += 1 else: mpi.mpi_send( len(varList), 1, mpi.MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) for im in range(len(varList)): sp_utilities.send_EMData( varList[im], main_node, im + myid + 70000) # What with the attributes?? mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: sp_applications.header( optparse.os.path.join(current_output_dir, options.var2D), params="xform.projection", fimport=optparse.os.path.join(current_output_dir, "params.txt"), ) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time.time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = sp_reconstruction.recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) # res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: if current_decimate != 1.0: res = sp_fundamentals.resample( res, old_div(1.0, current_decimate)) res = sp_fundamentals.fpol(res, nnxo, nnxo, nnxo) sp_utilities.set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add( "%-70s: %s\n" % ("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]" % (old_div( (time.time() - t6), 60.0))) log_main.add("Total computation time %f12.1 [m]" % (old_div( (time.time() - t0), 60.0))) log_main.add("sx3dvariability finishes") if RUNNING_UNDER_MPI: sp_global_def.MPI = False sp_global_def.BATCH = False