def test_adjacency_matrix(self):
        g = DirectedGraph(8)
        g.add_random_edges(15)

        before = g.to_adjacency_matrix()
        g.from_adjacency_matrix(before)
        after = g.to_adjacency_matrix()

        assert before == after
    def test_incidence_matrix_file(self):
        g = DirectedGraph(8)
        g.add_random_edges(15)

        before = g.to_adjacency_matrix()
        g.save("test", "im")
        g.load("test.im")
        after = g.to_adjacency_matrix()

        assert before == after
示例#3
0
def _page_rank_matrix(g: DirectedGraph, d) -> Dict[int, float]:
    n = len(g.nodes)
    P = np.zeros((n, n))
    A = np.array(g.to_adjacency_matrix())
    for i in range(n):
        for j in range(n):
            P[i][j] = (1.0 - d) * A[i][j] / g.node_degree(i + 1) + d / float(n)

    p0 = np.full(n, 1 / n)
    p1 = np.zeros(n)
    i = 0
    err = float("inf")
    while err > 1e-11:
        p1 = p0.dot(P)
        diff = p1 - p0
        err = sum(x**2 for x in diff)
        p0 = p1
        i += 1

    print(f"Zbieżność uzyskano po {i} iteracjach.")
    return {k: p1[k - 1] for k in range(1, n + 1)}