示例#1
0
文件: ner.py 项目: entn-at/active_ner
    def Model(cls, nr_class, **cfg):
        depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 1))
        subword_features = util.env_opt('subword_features',
                                        cfg.get('subword_features', True))
        conv_depth = util.env_opt('conv_depth', cfg.get('conv_depth', 4))
        conv_window = util.env_opt('conv_window', cfg.get('conv_depth', 1))
        t2v_pieces = util.env_opt('cnn_maxout_pieces',
                                  cfg.get('cnn_maxout_pieces', 3))
        bilstm_depth = util.env_opt('bilstm_depth', cfg.get('bilstm_depth', 0))
        self_attn_depth = util.env_opt('self_attn_depth',
                                       cfg.get('self_attn_depth', 0))
        assert depth == 1
        parser_maxout_pieces = util.env_opt('parser_maxout_pieces',
                                            cfg.get('maxout_pieces', 2))
        token_vector_width = util.env_opt('token_vector_width',
                                          cfg.get('token_vector_width', 96))
        hidden_width = util.env_opt('hidden_width',
                                    cfg.get('hidden_width', 64))
        embed_size = util.env_opt('embed_size', cfg.get('embed_size', 2000))
        tok2vec = get_t2v(token_vector_width,
                          embed_size,
                          conv_depth=conv_depth,
                          conv_window=conv_window,
                          cnn_maxout_pieces=t2v_pieces,
                          subword_features=subword_features,
                          bilstm_depth=bilstm_depth)
        tok2vec = chain(tok2vec, flatten)
        tok2vec.nO = token_vector_width
        lower = PrecomputableAffine(hidden_width,
                                    nF=cls.nr_feature,
                                    nI=token_vector_width,
                                    nP=parser_maxout_pieces)
        lower.nP = parser_maxout_pieces

        with Model.use_device('cpu'):
            upper = Affine(nr_class, hidden_width, drop_factor=0.0)
        upper.W *= 0

        cfg = {
            'nr_class': nr_class,
            'hidden_depth': depth,
            'token_vector_width': token_vector_width,
            'hidden_width': hidden_width,
            'maxout_pieces': parser_maxout_pieces,
            'pretrained_vectors': None,
            'bilstm_depth': bilstm_depth,
            'self_attn_depth': self_attn_depth,
            'conv_depth': conv_depth,
            'conv_window': conv_window,
            'embed_size': embed_size,
            'cnn_maxout_pieces': t2v_pieces
        }
        return ParserModel(tok2vec, lower, upper), cfg
示例#2
0
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
    model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP)
    assert model.W.shape == (nF, nO, nP, nI)
    tensor = model.ops.allocate((10, nI))
    Y, get_dX = model.begin_update(tensor)
    assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
    assert model.d_pad.shape == (1, nF, nO, nP)
    dY = model.ops.allocate((15, nO, nP))
    ids = model.ops.allocate((15, nF))
    ids[1, 2] = -1
    dY[1] = 1
    assert model.d_pad[0, 2, 0, 0] == 0.0
    model._backprop_padding(dY, ids)
    assert model.d_pad[0, 2, 0, 0] == 1.0
    model.d_pad.fill(0.0)
    ids.fill(0.0)
    dY.fill(0.0)
    ids[1, 2] = -1
    ids[1, 1] = -1
    ids[1, 0] = -1
    dY[1] = 1
    assert model.d_pad[0, 2, 0, 0] == 0.0
    model._backprop_padding(dY, ids)
    assert model.d_pad[0, 2, 0, 0] == 3.0
示例#3
0
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
    model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP)
    assert model.W.shape == (nF, nO, nP, nI)
    tensor = model.ops.allocate((10, nI))
    Y, get_dX = model.begin_update(tensor)
    assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
    assert model.d_pad.shape == (1, nF, nO, nP)
    dY = model.ops.allocate((15, nO, nP))
    ids = model.ops.allocate((15, nF))
    ids[1, 2] = -1
    dY[1] = 1
    assert model.d_pad[0, 2, 0, 0] == 0.0
    model._backprop_padding(dY, ids)
    assert model.d_pad[0, 2, 0, 0] == 1.0
    model.d_pad.fill(0.0)
    ids.fill(0.0)
    dY.fill(0.0)
    ids[1, 2] = -1
    ids[1, 1] = -1
    ids[1, 0] = -1
    dY[1] = 1
    assert model.d_pad[0, 2, 0, 0] == 0.0
    model._backprop_padding(dY, ids)
    assert model.d_pad[0, 2, 0, 0] == 3.0
def precompute_hiddens(nO, nI, nF, nP, **cfg):
    return PrecomputableAffine(hidden_width,
                               nF=nr_feature,
                               nI=token_vector_width,
                               nP=parser_maxout_pieces)