def plan_one_path(obs_i, obs, obc, start_state, goal_state, goal_inform_state, max_iteration, out_queue): if args.env_type == 'pendulum': system = standard_cpp_systems.PSOPTPendulum() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1: bvp_solver.solve(x0, x1, 200, num_steps, 1, 20, step_sz) elif args.env_type == 'cartpole_obs': #system = standard_cpp_systems.RectangleObs(obs[i], 4.0, 'cartpole') system = _sst_module.CartPole() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 200, num_steps, step_sz * 1, step_sz * 50, x_init, u_init, t_init) goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type in [ 'acrobot_obs', 'acrobot_obs_2', 'acrobot_obs_3', 'acrobot_obs_4', 'acrobot_obs_8' ]: #system = standard_cpp_systems.RectangleObs(obs[i], 6.0, 'acrobot') obs_width = 6.0 psopt_system = _sst_module.PSOPTAcrobot() propagate_system = standard_cpp_systems.RectangleObs( obs, 6., 'acrobot') distance_computer = propagate_system.distance_computer() #distance_computer = _sst_module.euclidean_distance(np.array(propagate_system.is_circular_topology())) step_sz = 0.02 num_steps = 21 goal_radius = 2.0 random_seed = 0 delta_near = .1 delta_drain = 0.05 #print('creating planner...') planner = vis_planners.DeepSMPWrapper(mlp_path, encoder_path, cost_mlp_path, cost_encoder_path, args.bvp_iter, num_steps, step_sz, propagate_system, 3) # generate a path by using SST to plan for some maximal iterations time0 = time.time() #print('obc:') #print(obc.shape) #print(delta_near) #print(delta_drain) #print('start_state:') #print(start_state) #print('goal_state:') #print(goal_state) res_x, res_u, res_t = planner.plan("sst", args.plan_type, propagate_system, psopt_system, obc.flatten(), start_state, goal_inform_state, goal_inform_state, \ goal_radius, max_iteration, distance_computer, \ args.delta_near, args.delta_drain) #res_x, res_u, res_t = planner.plan("sst", propagate_system, psopt_system, obc.flatten(), start_state, goal_state, goal_inform_state, \ # goal_radius, max_iteration, propagate_system.distance_computer(), \ # delta_near, delta_drain) plan_time = time.time() - time0 """ # visualization plt.ion() fig = plt.figure() ax = fig.add_subplot(111) #ax.set_autoscale_on(True) ax.set_xlim(-np.pi, np.pi) ax.set_ylim(-np.pi, np.pi) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') hl_for, = ax.plot([], [], 'g') hl_back, = ax.plot([], [], 'r') hl_for_mpnet, = ax.plot([], [], 'lightgreen') hl_back_mpnet, = ax.plot([], [], 'salmon') print(obs) def update_line(h, ax, new_data): new_data = wrap_angle(new_data, propagate_system) h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def remove_last_k(h, ax, k): h.set_data(h.get_xdata()[:-k], h.get_ydata()[:-k]) def draw_update_line(ax): #ax.relim() #ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() #plt.show() def wrap_angle(x, system): circular = system.is_circular_topology() res = np.array(x) for i in range(len(x)): if circular[i]: # use our previously saved version res[i] = x[i] - np.floor(x[i] / (2*np.pi))*(2*np.pi) if res[i] > np.pi: res[i] = res[i] - 2*np.pi return res dtheta = 0.1 feasible_points = [] infeasible_points = [] imin = 0 imax = int(2*np.pi/dtheta) for i in range(imin, imax): for j in range(imin, imax): x = np.array([dtheta*i-np.pi, dtheta*j-np.pi, 0., 0.]) if IsInCollision(x, obs_i): infeasible_points.append(x) else: feasible_points.append(x) feasible_points = np.array(feasible_points) infeasible_points = np.array(infeasible_points) print('feasible points') print(feasible_points) print('infeasible points') print(infeasible_points) ax.scatter(feasible_points[:,0], feasible_points[:,1], c='yellow') ax.scatter(infeasible_points[:,0], infeasible_points[:,1], c='pink') if len(res_x) != 0: xs_to_plot = np.array(res_x) for i in range(len(xs_to_plot)): xs_to_plot[i] = wrap_angle(xs_to_plot[i], propagate_system) ax.scatter(xs_to_plot[:,0], xs_to_plot[:,1], c='orange') print('solution: x') print(res_x) print('solution: u') print(res_u) print('solution: t') print(res_t) # draw start and goal ax.scatter(start_state[0], goal_state[0], marker='X') draw_update_line(ax) plt.waitforbuttonpress() #im = planner.visualize_nodes(propagate_system) #sec = input('Let us wait for user input') #show_image_opencv(im, "planning_tree", wait=True) """ print('plan time: %fs' % (plan_time)) if len(res_x) == 0: print('failed.') out_queue.put(-1) else: print('path succeeded.') out_queue.put(plan_time)
def plan_one_path(obs_i, obs, obc, start_state, goal_state, goal_inform_state, max_iteration, data, out_queue): if args.env_type == 'pendulum': system = standard_cpp_systems.PSOPTPendulum() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1: bvp_solver.solve(x0, x1, 200, num_steps, 1, 20, step_sz) elif args.env_type == 'cartpole_obs': #system = standard_cpp_systems.RectangleObs(obs[i], 4.0, 'cartpole') system = _sst_module.CartPole() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1, x_init, u_init, t_init: bvp_solver.solve(x0, x1, 200, num_steps, step_sz*1, step_sz*50, x_init, u_init, t_init) goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type in ['acrobot_obs','acrobot_obs_2', 'acrobot_obs_3', 'acrobot_obs_4', 'acrobot_obs_8']: #system = standard_cpp_systems.RectangleObs(obs[i], 6.0, 'acrobot') obs_width = 6.0 psopt_system = _sst_module.PSOPTAcrobot() propagate_system = standard_cpp_systems.RectangleObs(obs, 6., 'acrobot') distance_computer = propagate_system.distance_computer() #distance_computer = _sst_module.euclidean_distance(np.array(propagate_system.is_circular_topology())) bvp_wrapper = _sst_module.PSOPTBVPWrapper(psopt_system, 4, 1, 0) step_sz = 0.02 num_steps = 20 psopt_num_steps = 20 psopt_step_sz = 0.02 goal_radius=2 random_seed=0 #delta_near=1.0 #delta_drain=0.5 delta_near=0.1 delta_drain=0.05 #print('creating planner...') planner = vis_planners.DeepSMPWrapper(mlp_path, encoder_path, cost_mlp_path, cost_encoder_path, 20, psopt_num_steps+1, psopt_step_sz, step_sz, propagate_system, args.device) # generate a path by using SST to plan for some maximal iterations time0 = time.time() #print('obc:') #print(obc.shape) #print(delta_near) #print(delta_drain) #print('start_state:') #print(start_state) #print('goal_state:') #print(goal_state) plt.ion() fig = plt.figure() ax = fig.add_subplot(111) #ax.set_autoscale_on(True) ax.set_xlim(-np.pi, np.pi) ax.set_ylim(-np.pi, np.pi) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') hl_for, = ax.plot([], [], 'g') hl_back, = ax.plot([], [], 'r') hl_for_mpnet, = ax.plot([], [], 'lightgreen') hl_back_mpnet, = ax.plot([], [], 'salmon') #print(obs) def update_line(h, ax, new_data): new_data = wrap_angle(new_data, propagate_system) h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def remove_last_k(h, ax, k): h.set_data(h.get_xdata()[:-k], h.get_ydata()[:-k]) def draw_update_line(ax): #ax.relim() #ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() #plt.show() def wrap_angle(x, system): circular = system.is_circular_topology() res = np.array(x) for i in range(len(x)): if circular[i]: # use our previously saved version res[i] = x[i] - np.floor(x[i] / (2*np.pi))*(2*np.pi) if res[i] > np.pi: res[i] = res[i] - 2*np.pi return res dtheta = 0.1 feasible_points = [] infeasible_points = [] imin = 0 imax = int(2*np.pi/dtheta) circular = psopt_system.is_circular_topology() for i in range(imin, imax): for j in range(imin, imax): x = np.array([dtheta*i-np.pi, dtheta*j-np.pi, 0., 0.]) if IsInCollision(x, obs_i): infeasible_points.append(x) else: feasible_points.append(x) feasible_points = np.array(feasible_points) infeasible_points = np.array(infeasible_points) print('feasible points') print(feasible_points) print('infeasible points') print(infeasible_points) ax.scatter(feasible_points[:,0], feasible_points[:,1], c='yellow') ax.scatter(infeasible_points[:,0], infeasible_points[:,1], c='pink') #for i in range(len(data)): # update_line(hl, ax, data[i]) data = np.array(data) ax.scatter(data[:,0], data[:,1], c='lightblue', s=10) ax.scatter(data[-1,0], data[-1,1], c='red', s=10, marker='*') draw_update_line(ax) state_t = start_state state_t = data[0] for data_i in range(0,len(data),num_steps): print('iteration: %d' % (data_i)) print('state_t:') print(state_t) min_dis_to_goal = 100000. min_xs_to_plot = [] for trials in range(10): x_init, u_init, t_init = init_informer(propagate_system, state_t, data[data_i], psopt_num_steps+1, psopt_step_sz) print('x_init:') print(x_init) bvp_x, bvp_u, bvp_t = bvp_wrapper.solve(state_t, x_init[-1], 20, psopt_num_steps+1, 0.8*psopt_step_sz*psopt_num_steps, 2*psopt_step_sz*psopt_num_steps, \ x_init, u_init, t_init) print('bvp_x:') print(bvp_x) print('bvp_u:') print(bvp_u) print('bvp_t:') print(bvp_t) if len(bvp_u) != 0:# and bvp_t[0] > 0.01: # turn bvp_t off if want to use step_bvp # propagate data #p_start = bvp_x[0] p_start = state_t detail_paths = [p_start] detail_controls = [] detail_costs = [] state = [p_start] control = [] cost = [] for k in range(len(bvp_t)): #state_i.append(len(detail_paths)-1) max_steps = int(np.round(bvp_t[k]/step_sz)) accum_cost = 0. for step in range(1,max_steps+1): p_start = dynamics(p_start, bvp_u[k], step_sz) p_start = enforce_bounds(p_start) detail_paths.append(p_start) accum_cost += step_sz if (step % 1 == 0) or (step == max_steps): state.append(p_start) cost.append(accum_cost) accum_cost = 0. xs_to_plot = np.array(state) for i in range(len(xs_to_plot)): xs_to_plot[i] = wrap_angle(xs_to_plot[i], propagate_system) delta_x = xs_to_plot[-1] - data[data_i] for i in range(len(delta_x)): if circular[i]: delta_x[i] = delta_x[i] - np.floor(delta_x[i] / (2*np.pi))*(2*np.pi) if delta_x[i] > np.pi: delta_x[i] = delta_x[i] - 2*np.pi dis = np.linalg.norm(delta_x) if dis <= min_dis_to_goal: min_dis_to_goal = dis min_xs_to_plot = xs_to_plot #ax.scatter(xs_to_plot[:,0], xs_to_plot[:,1], c='green') ax.scatter(min_xs_to_plot[:,0], min_xs_to_plot[:,1], c='green', s=10.0) # draw start and goal #ax.scatter(start_state[0], goal_state[0], marker='X') draw_update_line(ax) #state_t = min_xs_to_plot[-1] # try using mpnet_res as new start state_t = data[data_i] #state_t = min_xs_to_plot[-1] print('data_i:') print(data[data_i]) #else: # # in incollision # state_t = data[data_i] #if len(res_x) == 0: # print('failed.') out_queue.put(0)
def plan_one_path(obs_i, obs, obc, detailed_data_path, data_path, start_state, goal_state, goal_inform_state, cost_i, max_iteration, out_queue_t, out_queue_cost, random_seed): if args.env_type == 'pendulum': system = standard_cpp_systems.PSOPTPendulum() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1: bvp_solver.solve(x0, x1, 200, num_steps, 1, 20, step_sz) elif args.env_type == 'cartpole_obs': #system = standard_cpp_systems.RectangleObs(obs[i], 4.0, 'cartpole') obs_width = 4.0 psopt_system = _sst_module.PSOPTCartPole() propagate_system = standard_cpp_systems.RectangleObs( obs, 4., 'cartpole') #distance_computer = propagate_system.distance_computer() distance_computer = _sst_module.euclidean_distance( np.array(propagate_system.is_circular_topology())) step_sz = 0.002 num_steps = 21 goal_radius = 1.5 random_seed = 0 delta_near = 2.0 delta_drain = 1.2 #delta_near=.2 #delta_drain=.1 cost_threshold = 1.05 min_time_steps = 10 max_time_steps = 200 #min_time_steps = 5 #max_time_steps = 400 integration_step = 0.002 elif args.env_type in [ 'acrobot_obs', 'acrobot_obs_2', 'acrobot_obs_3', 'acrobot_obs_4', 'acrobot_obs_8' ]: #system = standard_cpp_systems.RectangleObs(obs[i], 6.0, 'acrobot') obs_width = 6.0 psopt_system = _sst_module.PSOPTAcrobot() propagate_system = standard_cpp_systems.RectangleObs( obs, 6., 'acrobot') distance_computer = propagate_system.distance_computer() #distance_computer = _sst_module.euclidean_distance(np.array(propagate_system.is_circular_topology())) step_sz = 0.02 num_steps = 21 goal_radius = 2.0 random_seed = 0 delta_near = 1.0 delta_drain = 0.5 cost_threshold = 1.05 min_time_steps = 5 max_time_steps = 100 integration_step = 0.02 planner = _sst_module.SSTWrapper( state_bounds=propagate_system.get_state_bounds(), control_bounds=propagate_system.get_control_bounds(), distance=distance_computer, start_state=start_state, goal_state=goal_state, goal_radius=goal_radius, random_seed=random_seed, sst_delta_near=delta_near, sst_delta_drain=delta_drain) #print('creating planner...') # generate a path by using SST to plan for some maximal iterations time0 = time.time() for i in range(max_iteration): planner.step(propagate_system, min_time_steps, max_time_steps, integration_step) # early break for initial path solution = planner.get_solution() if solution is not None: #print('solution found already.') # based on cost break xs, us, ts = solution t_sst = np.sum(ts) #print(t_sst) #print(cost_i) if t_sst <= cost_i * cost_threshold: print('solved in %d iterations' % (i)) break plan_time = time.time() - time0 solution = planner.get_solution() xs, us, ts = solution print(np.linalg.norm(np.array(xs[-1]) - goal_state)) """ # visualization plt.ion() fig = plt.figure() ax = fig.add_subplot(111) #ax.set_autoscale_on(True) #ax.set_xlim(-30, 30) ax.set_xlim(-np.pi, np.pi) ax.set_ylim(-np.pi, np.pi) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') hl_for, = ax.plot([], [], 'g') hl_back, = ax.plot([], [], 'r') hl_for_mpnet, = ax.plot([], [], 'lightgreen') hl_back_mpnet, = ax.plot([], [], 'salmon') #print(obs) def update_line(h, ax, new_data): new_data = wrap_angle(new_data, propagate_system) h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def remove_last_k(h, ax, k): h.set_data(h.get_xdata()[:-k], h.get_ydata()[:-k]) def draw_update_line(ax): #ax.relim() #ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() #plt.show() def wrap_angle(x, system): circular = system.is_circular_topology() res = np.array(x) for i in range(len(x)): if circular[i]: # use our previously saved version res[i] = x[i] - np.floor(x[i] / (2*np.pi))*(2*np.pi) if res[i] > np.pi: res[i] = res[i] - 2*np.pi return res dx = 1 dtheta = 0.1 feasible_points = [] infeasible_points = [] imin = 0 #imax = int(2*30./dx) imax = int(2*np.pi/dtheta) jmin = 0 jmax = int(2*np.pi/dtheta) for i in range(imin, imax): for j in range(jmin, jmax): x = np.array([dtheta*i-np.pi, dtheta*j-np.pi, 0., 0.]) if IsInCollision(x, obs_i): infeasible_points.append(x) else: feasible_points.append(x) feasible_points = np.array(feasible_points) infeasible_points = np.array(infeasible_points) print('feasible points') print(feasible_points) print('infeasible points') print(infeasible_points) ax.scatter(feasible_points[:,0], feasible_points[:,1], c='yellow') ax.scatter(infeasible_points[:,0], infeasible_points[:,1], c='pink') #for i in range(len(data)): # update_line(hl, ax, data[i]) draw_update_line(ax) #state_t = start_state xs_to_plot = np.array(detailed_data_path) for i in range(len(xs_to_plot)): xs_to_plot[i] = wrap_angle(detailed_data_path[i], propagate_system) ax.scatter(xs_to_plot[:,0], xs_to_plot[:,1], c='lightgreen', s=0.5) # draw start and goal #ax.scatter(start_state[0], goal_state[0], marker='X') draw_update_line(ax) #plt.waitforbuttonpress() if solution is not None: xs, us, ts = solution # propagate data p_start = xs[0] detail_paths = [p_start] detail_controls = [] detail_costs = [] state = [p_start] control = [] cost = [] for k in range(len(us)): #state_i.append(len(detail_paths)-1) print(ts[k]) max_steps = int(np.round(ts[k]/step_sz)) accum_cost = 0. #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][k]) # modify it because of small difference between data and actual propagation for step in range(1,max_steps+1): p_start = dynamics(p_start, us[k], step_sz) p_start = enforce_bounds(p_start) detail_paths.append(p_start) accum_cost += step_sz if (step % 1 == 0) or (step == max_steps): state.append(p_start) #print('control') #print(controls[i][j]) cost.append(accum_cost) accum_cost = 0. #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][-1]) #state[-1] = xs[-1] xs_to_plot = np.array(state) for i in range(len(xs_to_plot)): xs_to_plot[i] = wrap_angle(xs_to_plot[i], propagate_system) ax.scatter(xs_to_plot[:,0], xs_to_plot[:,1], c='green', s=0.5) start_state_np = np.array(start_state) goal_state_np = np.array(goal_state) ax.scatter([start_state_np[0]], [start_state_np[1]], c='blue', marker='*') ax.scatter([goal_state_np[0]], [goal_state_np[1]], c='red', marker='*') # draw start and goal #ax.scatter(start_state[0], goal_state[0], marker='X') draw_update_line(ax) plt.waitforbuttonpress() """ # validate if the path contains collision if solution is not None: res_x, res_u, res_t = solution print('solution_x:') print(res_x) print('path_x:') print(np.array(data_path)) # propagate data p_start = res_x[0] detail_paths = [p_start] detail_controls = [] detail_costs = [] state = [p_start] control = [] cost = [] for k in range(len(res_u)): #state_i.append(len(detail_paths)-1) max_steps = int(np.round(res_t[k] / step_sz)) accum_cost = 0. #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][k]) # modify it because of small difference between data and actual propagation #p_start = res_x[k] #state[-1] = res_x[k] for step in range(1, max_steps + 1): p_start = dynamics(p_start, res_u[k], step_sz) p_start = enforce_bounds(p_start) detail_paths.append(p_start) accum_cost += step_sz if (step % 1 == 0) or (step == max_steps): state.append(p_start) #print('control') #print(controls[i][j]) cost.append(accum_cost) accum_cost = 0. # check collision for the new state if IsInCollision(p_start, obs_i): print( 'collision happens at u_index: %d, step: %d' % (k, step)) assert not IsInCollision(p_start, obs_i) #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][-1]) #state[-1] = res_x[-1] # validation end print('plan time: %fs' % (plan_time)) if solution is None: print('failed.') out_queue_t.put(-1) out_queue_cost.put(-1) else: print('path succeeded.') out_queue_t.put(plan_time) out_queue_cost.put(t_sst)
print(len(self.states)) self.total = len(self.states) ani = animation.FuncAnimation(self.fig, self._animate, range(0, len(self.states), 20), interval=self.dt, blit=True, init_func=self._init, repeat=True) return ani # generate start and goal print('here') #obs_list = np.array(obs_list) system = standard_cpp_systems.RectangleObs(obs_list, width, 'car') #system = CartPoleObs(obs_list) # Create SST planner min_time_steps = 20 max_time_steps = 200 integration_step = 0.002 max_iter = 1500000 # increase this to 1500000 to ensure more optimal solution can be found goal_radius = 2. random_seed = 0 sst_delta_near = .6 sst_delta_drain = .2 low = [] high = [] state_bounds = system.get_state_bounds() for i in range(len(state_bounds)):
def plan_one_path(obs_i, obs, obc, start_state, goal_state, goal_inform_state, cost_i, max_iteration, out_queue): if args.env_type in ['acrobot_obs','acrobot_obs_2', 'acrobot_obs_3', 'acrobot_obs_4', 'acrobot_obs_8']: #system = standard_cpp_systems.RectangleObs(obs[i], 6.0, 'acrobot') obs_width = 6.0 psopt_system = _sst_module.PSOPTAcrobot() propagate_system = standard_cpp_systems.RectangleObs(obs, 6., 'acrobot') distance_computer = propagate_system.distance_computer() #distance_computer = _sst_module.euclidean_distance(np.array(propagate_system.is_circular_topology())) step_sz = 0.02 num_steps = 21 goal_radius=2.0 random_seed=0 delta_near=1.0 delta_drain=0.5 device = 3 #print('creating planner...') planner = vis_planners.DeepSMPWrapper(mlp_path, encoder_path, cost_mlp_path, cost_encoder_path, \ 200, num_steps, step_sz, propagate_system, device) #cost_threshold = cost_i * 1.1 cost_threshold = 100000000. # generate a path by using SST to plan for some maximal iterations time0 = time.time() res_x, res_u, res_t = planner.plan_tree_SMP_cost_gradient("sst", propagate_system, psopt_system, obc.flatten(), start_state, goal_inform_state, goal_inform_state, \ goal_radius, max_iteration, distance_computer, \ delta_near, delta_drain, cost_threshold, 15) plan_time = time.time() - time0 """ # visualization plt.ion() fig = plt.figure() ax = fig.add_subplot(111) #ax.set_autoscale_on(True) ax.set_xlim(-np.pi, np.pi) ax.set_ylim(-np.pi, np.pi) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') hl_for, = ax.plot([], [], 'g') hl_back, = ax.plot([], [], 'r') hl_for_mpnet, = ax.plot([], [], 'lightgreen') hl_back_mpnet, = ax.plot([], [], 'salmon') #print(obs) def update_line(h, ax, new_data): new_data = wrap_angle(new_data, propagate_system) h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def remove_last_k(h, ax, k): h.set_data(h.get_xdata()[:-k], h.get_ydata()[:-k]) def draw_update_line(ax): #ax.relim() #ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() #plt.show() def wrap_angle(x, system): circular = system.is_circular_topology() res = np.array(x) for i in range(len(x)): if circular[i]: # use our previously saved version res[i] = x[i] - np.floor(x[i] / (2*np.pi))*(2*np.pi) if res[i] > np.pi: res[i] = res[i] - 2*np.pi return res dtheta = 0.1 feasible_points = [] infeasible_points = [] imin = 0 imax = int(2*np.pi/dtheta) for i in range(imin, imax): for j in range(imin, imax): x = np.array([dtheta*i-np.pi, dtheta*j-np.pi, 0., 0.]) if IsInCollision(x, obs_i): infeasible_points.append(x) else: feasible_points.append(x) feasible_points = np.array(feasible_points) infeasible_points = np.array(infeasible_points) print('feasible points') print(feasible_points) print('infeasible points') print(infeasible_points) ax.scatter(feasible_points[:,0], feasible_points[:,1], c='yellow') ax.scatter(infeasible_points[:,0], infeasible_points[:,1], c='pink') #for i in range(len(data)): # update_line(hl, ax, data[i]) draw_update_line(ax) #state_t = start_state if len(res_u): # propagate data p_start = res_x[0] detail_paths = [p_start] detail_controls = [] detail_costs = [] state = [p_start] control = [] cost = [] for k in range(len(res_u)): #state_i.append(len(detail_paths)-1) max_steps = int(res_t[k]/step_sz) accum_cost = 0. #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][k]) # modify it because of small difference between data and actual propagation p_start = res_x[k] state[-1] = res_x[k] for step in range(1,max_steps+1): p_start = dynamics(p_start, res_u[k], step_sz) p_start = enforce_bounds(p_start) detail_paths.append(p_start) accum_cost += step_sz if (step % 1 == 0) or (step == max_steps): state.append(p_start) #print('control') #print(controls[i][j]) cost.append(accum_cost) accum_cost = 0. #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][-1]) state[-1] = res_x[-1] xs_to_plot = np.array(state) for i in range(len(xs_to_plot)): xs_to_plot[i] = wrap_angle(xs_to_plot[i], propagate_system) if IsInCollision(xs_to_plot[i], obs_i): print('in collision') ax.scatter(xs_to_plot[:,0], xs_to_plot[:,1], c='green') # draw start and goal #ax.scatter(start_state[0], goal_state[0], marker='X') draw_update_line(ax) plt.waitforbuttonpress() """ #im = planner.visualize_nodes(propagate_system) #sec = input('Let us wait for user input') #show_image_opencv(im, "planning_tree", wait=True) # validate if the path contains collision """ if len(res_u): # propagate data p_start = res_x[0] detail_paths = [p_start] detail_controls = [] detail_costs = [] state = [p_start] control = [] cost = [] for k in range(len(res_u)): #state_i.append(len(detail_paths)-1) max_steps = int(res_t[k]/step_sz) accum_cost = 0. #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][k]) # modify it because of small difference between data and actual propagation p_start = res_x[k] state[-1] = res_x[k] for step in range(1,max_steps+1): p_start = dynamics(p_start, res_u[k], step_sz) p_start = enforce_bounds(p_start) detail_paths.append(p_start) accum_cost += step_sz if (step % 1 == 0) or (step == max_steps): state.append(p_start) #print('control') #print(controls[i][j]) cost.append(accum_cost) accum_cost = 0. # check collision for the new state assert not IsInCollision(p_start, obs_i) #print('p_start:') #print(p_start) #print('data:') #print(paths[i][j][-1]) state[-1] = res_x[-1] # validation end """ print('plan time: %fs' % (plan_time)) if len(res_x) == 0: print('failed.') out_queue.put(-1) else: print('path succeeded.') print('cost: %f' % (np.sum(res_t))) print('cost_threshold: %f' % (cost_threshold)) print('data cost: %f' % (cost_i)) out_queue.put(plan_time)
def plan_one_path(obs_i, obs, obc, start_state, goal_state, goal_inform_state, cost_i, max_iteration, data, out_queue): if args.env_type == 'pendulum': system = standard_cpp_systems.PSOPTPendulum() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1: bvp_solver.solve(x0, x1, 200, num_steps, 1, 20, step_sz) elif args.env_type == 'cartpole_obs': obs_width = 4.0 psopt_system = _sst_module.PSOPTCartPole() propagate_system = standard_cpp_systems.RectangleObs( obs, obs_width, 'cartpole') distance_computer = propagate_system.distance_computer() #distance_computer = _sst_module.euclidean_distance(np.array(propagate_system.is_circular_topology())) step_sz = 0.002 num_steps = 101 goal_radius = 1.5 random_seed = 0 delta_near = 2.0 delta_drain = 1.2 device = 3 num_sample = 10 min_time_steps = 10 max_time_steps = 200 mpnet_goal_threshold = 2.0 mpnet_length_threshold = 40 pick_goal_init_threshold = 0.1 pick_goal_end_threshold = 0.8 pick_goal_start_percent = 0.4 elif args.env_type in [ 'acrobot_obs', 'acrobot_obs_2', 'acrobot_obs_3', 'acrobot_obs_4', 'acrobot_obs_8' ]: #system = standard_cpp_systems.RectangleObs(obs[i], 6.0, 'acrobot') obs_width = 6.0 psopt_system = _sst_module.PSOPTAcrobot() propagate_system = standard_cpp_systems.RectangleObs( obs, 6., 'acrobot') distance_computer = propagate_system.distance_computer() #distance_computer = _sst_module.euclidean_distance(np.array(propagate_system.is_circular_topology())) step_sz = 0.02 num_steps = 21 goal_radius = 2.0 random_seed = 0 delta_near = 1.0 delta_drain = 0.5 #print('creating planner...') planner = vis_planners.DeepSMPWrapper(mlp_path, encoder_path, cost_mlp_path, cost_encoder_path, \ 200, num_steps, step_sz, propagate_system, 3) #cost_threshold = cost_i * 1.1 cost_threshold = 100000000. """ # visualization plt.ion() fig = plt.figure() ax = fig.add_subplot(111) #ax.set_autoscale_on(True) ax.set_xlim(-np.pi, np.pi) ax.set_ylim(-np.pi, np.pi) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') hl_for, = ax.plot([], [], 'g') hl_back, = ax.plot([], [], 'r') hl_for_mpnet, = ax.plot([], [], 'lightgreen') hl_back_mpnet, = ax.plot([], [], 'salmon') #print(obs) def update_line(h, ax, new_data): new_data = wrap_angle(new_data, propagate_system) h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def remove_last_k(h, ax, k): h.set_data(h.get_xdata()[:-k], h.get_ydata()[:-k]) def draw_update_line(ax): #ax.relim() #ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() #plt.show() def wrap_angle(x, system): circular = system.is_circular_topology() res = np.array(x) for i in range(len(x)): if circular[i]: # use our previously saved version res[i] = x[i] - np.floor(x[i] / (2*np.pi))*(2*np.pi) if res[i] > np.pi: res[i] = res[i] - 2*np.pi return res dtheta = 0.1 feasible_points = [] infeasible_points = [] imin = 0 imax = int(2*np.pi/dtheta) for i in range(imin, imax): for j in range(imin, imax): x = np.array([dtheta*i-np.pi, dtheta*j-np.pi, 0., 0.]) if IsInCollision(x, obs_i): infeasible_points.append(x) else: feasible_points.append(x) feasible_points = np.array(feasible_points) infeasible_points = np.array(infeasible_points) print('feasible points') print(feasible_points) print('infeasible points') print(infeasible_points) ax.scatter(feasible_points[:,0], feasible_points[:,1], c='yellow') ax.scatter(infeasible_points[:,0], infeasible_points[:,1], c='pink') for i in range(len(data)): update_line(hl, ax, data[i]) draw_update_line(ax) # visualization end """ # visualize for cartpole plt.ion() fig = plt.figure() ax = fig.add_subplot(111) ax.set_autoscale_on(True) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') def update_line(h, ax, new_data): h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def draw_update_line(ax): ax.relim() ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() # randomly pick up a point in the data, and find similar data in the dataset # plot the next point #ax.set_autoscale_on(True) ax.set_xlim(-30, 30) ax.set_ylim(-np.pi, np.pi) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') hl_for, = ax.plot([], [], 'g') hl_back, = ax.plot([], [], 'r') hl_for_mpnet, = ax.plot([], [], 'lightgreen') hl_back_mpnet, = ax.plot([], [], 'salmon') #print(obs) def update_line(h, ax, new_data): new_data = wrap_angle(new_data, propagate_system) h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def remove_last_k(h, ax, k): h.set_data(h.get_xdata()[:-k], h.get_ydata()[:-k]) def draw_update_line(ax): #ax.relim() #ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() #plt.show() def wrap_angle(x, system): circular = system.is_circular_topology() res = np.array(x) for i in range(len(x)): if circular[i]: # use our previously saved version res[i] = x[i] - np.floor(x[i] / (2 * np.pi)) * (2 * np.pi) if res[i] > np.pi: res[i] = res[i] - 2 * np.pi return res dx = 1 dtheta = 0.1 feasible_points = [] infeasible_points = [] imin = 0 imax = int(2 * 30. / dx) jmin = 0 jmax = int(2 * np.pi / dtheta) for i in range(imin, imax): for j in range(jmin, jmax): x = np.array([dx * i - 30, 0., dtheta * j - np.pi, 0.]) if IsInCollision(x, obs_i): infeasible_points.append(x) else: feasible_points.append(x) feasible_points = np.array(feasible_points) infeasible_points = np.array(infeasible_points) print('feasible points') print(feasible_points) print('infeasible points') print(infeasible_points) ax.scatter(feasible_points[:, 0], feasible_points[:, 2], c='yellow') ax.scatter(infeasible_points[:, 0], infeasible_points[:, 2], c='pink') #for i in range(len(data)): # update_line(hl, ax, data[i]) draw_update_line(ax) #state_t = start_state # visualization end # generate a path by using SST to plan for some maximal iterations state_t = start_state pick_goal_threshold = .0 ax.scatter(goal_inform_state[0], goal_inform_state[2], marker='*', c='red') # cartpole for i in range(max_iteration): time0 = time.time() # determine if picking goal based on iteration number goal_prob = random.random() #flag=1: using MPNet #flag=0: not using MPNet if goal_prob <= pick_goal_threshold: flag = 0 else: flag = 1 bvp_x, bvp_u, bvp_t, mpnet_res = planner.plan_tree_SMP_step("sst", propagate_system, psopt_system, obc.flatten(), state_t, goal_inform_state, goal_inform_state, \ flag, goal_radius, max_iteration, distance_computer, \ delta_near, delta_drain, cost_threshold) if len( bvp_u ) != 0: # and bvp_t[0] > 0.01: # turn bvp_t off if want to use step_bvp xw_scat = ax.scatter(mpnet_res[0], mpnet_res[2], c='lightgreen') draw_update_line(ax) # propagate data p_start = bvp_x[0] detail_paths = [p_start] detail_controls = [] detail_costs = [] state = [p_start] control = [] cost = [] for k in range(len(bvp_u)): #state_i.append(len(detail_paths)-1) max_steps = int(bvp_t[k] / step_sz) accum_cost = 0. for step in range(1, max_steps + 1): p_start = dynamics(p_start, bvp_u[k], step_sz) p_start = enforce_bounds(p_start) detail_paths.append(p_start) accum_cost += step_sz if (step % 1 == 0) or (step == max_steps): state.append(p_start) cost.append(accum_cost) accum_cost = 0. xs_to_plot = np.array(state) for j in range(len(xs_to_plot)): xs_to_plot[j] = wrap_angle(xs_to_plot[j], propagate_system) xs_to_plot = xs_to_plot[::5] #ax.scatter(xs_to_plot[:,0], xs_to_plot[:,1], c='green') # acrobot ax.scatter(xs_to_plot[:, 0], xs_to_plot[:, 2], c='green') # cartpole #ax.scatter(bvp_x[:,0], bvp_x[:,1], c='green') print('solution: x') print(bvp_x) print('solution: u') print(bvp_u) print('solution: t') print(bvp_t) # draw start and goal #ax.scatter(start_state[0], goal_state[0], marker='X') draw_update_line(ax) #state_t = state[-1] print('state_t:') print(state_t) print('mpnet_res') print(mpnet_res) # based on flag, determine how to change state_t if flag: # only change state_t if in MPNet inform mode #if len(bvp_u) != 0: if True: # try using steered result as next start #if not IsInCollision(state_t, obs_i): state_t = mpnet_res print('after copying to state_t:') print('state_t') print(state_t) # if in collision, then not using it else: print('failure') state_t = start_state # failed BVP, back to origin plan_time = time.time() - time0 print('plan time: %fs' % (plan_time)) if len(res_u) == 0: print('failed.') out_queue.put(-1) else: print('path succeeded.') print('cost: %f' % (np.sum(res_t))) print('cost_threshold: %f' % (cost_threshold)) print('data cost: %f' % (cost_i)) out_queue.put(plan_time)
def plan_one_path(obs_i, obs, obc, start_state, goal_state, goal_inform_state, max_iteration, data, out_queue): if args.env_type == 'pendulum': system = standard_cpp_systems.PSOPTPendulum() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1: bvp_solver.solve(x0, x1, 200, num_steps, 1, 20, step_sz) elif args.env_type == 'cartpole_obs': #system = standard_cpp_systems.RectangleObs(obs[i], 4.0, 'cartpole') system = _sst_module.CartPole() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 200, num_steps, step_sz * 1, step_sz * 50, x_init, u_init, t_init) goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type in [ 'acrobot_obs', 'acrobot_obs_2', 'acrobot_obs_3', 'acrobot_obs_4', 'acrobot_obs_8' ]: #system = standard_cpp_systems.RectangleObs(obs[i], 6.0, 'acrobot') obs_width = 6.0 psopt_system = _sst_module.PSOPTAcrobot() propagate_system = standard_cpp_systems.RectangleObs( obs, 6., 'acrobot') distance_computer = propagate_system.distance_computer() #distance_computer = _sst_module.euclidean_distance(np.array(propagate_system.is_circular_topology())) step_sz = 0.02 num_steps = 21 goal_radius = 2 random_seed = 0 #delta_near=1.0 #delta_drain=0.5 delta_near = 0.1 delta_drain = 0.05 #print('creating planner...') planner = vis_planners.DeepSMPWrapper(mlp_path, encoder_path, cost_mlp_path, cost_encoder_path, 20, num_steps, step_sz, propagate_system, args.device) # generate a path by using SST to plan for some maximal iterations time0 = time.time() #print('obc:') #print(obc.shape) #print(delta_near) #print(delta_drain) #print('start_state:') #print(start_state) #print('goal_state:') #print(goal_state) state_t = start_state pick_goal_threshold = 0.10 goal_linear_inc_start_iter = int(0.6 * max_iteration) goal_linear_inc_end_iter = max_iteration goal_linear_inc_end_threshold = 0.95 goal_linear_inc = (goal_linear_inc_end_threshold - pick_goal_threshold) / (goal_linear_inc_end_iter - goal_linear_inc_start_iter) start_time = time.time() plan_time = -1 for i in tqdm(range(max_iteration)): print('iteration: %d' % (i)) print('state_t:') print(state_t) # calculate if using goal or not use_goal_prob = random.random() if i > goal_linear_inc_start_iter: pick_goal_threshold += goal_linear_inc if use_goal_prob <= pick_goal_threshold: flag = 0 else: flag = 1 bvp_x, bvp_u, bvp_t, mpnet_res = planner.plan_step("sst", propagate_system, psopt_system, obc.flatten(), state_t, goal_inform_state, goal_inform_state, \ flag, goal_radius, max_iteration, distance_computer, \ delta_near, delta_drain) solution = planner.get_solution() if solution is not None: plan_time = time.time() - start_time if plan_time == -1: print('failed.') out_queue.put(-1) else: print('path succeeded.') out_queue.put(plan_time) #if len(res_x) == 0:
def plan_one_path(obs_i, obs, obc, start_state, goal_state, goal_inform_state, max_iteration, data, out_queue): if args.env_type == 'pendulum': system = standard_cpp_systems.PSOPTPendulum() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 2, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1: bvp_solver.solve(x0, x1, 200, num_steps, 1, 20, step_sz) elif args.env_type == 'cartpole_obs': #system = standard_cpp_systems.RectangleObs(obs[i], 4.0, 'cartpole') system = _sst_module.CartPole() bvp_solver = _sst_module.PSOPTBVPWrapper(system, 4, 1, 0) step_sz = 0.002 num_steps = 20 traj_opt = lambda x0, x1, x_init, u_init, t_init: bvp_solver.solve( x0, x1, 200, num_steps, step_sz * 1, step_sz * 50, x_init, u_init, t_init) goal_S0 = np.identity(4) goal_rho0 = 1.0 elif args.env_type in [ 'acrobot_obs', 'acrobot_obs_2', 'acrobot_obs_3', 'acrobot_obs_4', 'acrobot_obs_8' ]: #system = standard_cpp_systems.RectangleObs(obs[i], 6.0, 'acrobot') obs_width = 6.0 psopt_system = _sst_module.PSOPTAcrobot() propagate_system = standard_cpp_systems.RectangleObs( obs, 6., 'acrobot') distance_computer = propagate_system.distance_computer() #distance_computer = _sst_module.euclidean_distance(np.array(propagate_system.is_circular_topology())) psopt_step_sz = 0.02 psopt_num_steps = 21 step_sz = 0.02 num_steps = 21 goal_radius = 2 random_seed = 0 #delta_near=1.0 #delta_drain=0.5 delta_near = 0.1 delta_drain = 0.05 #print('creating planner...') planner = vis_planners.DeepSMPWrapper(mlp_path, encoder_path, cost_mlp_path, cost_encoder_path, 20, psopt_num_steps, psopt_step_sz, step_sz, propagate_system, args.device) # generate a path by using SST to plan for some maximal iterations time0 = time.time() #print('obc:') #print(obc.shape) #print(delta_near) #print(delta_drain) #print('start_state:') #print(start_state) #print('goal_state:') #print(goal_state) plt.ion() fig = plt.figure() ax = fig.add_subplot(111) #ax.set_autoscale_on(True) ax.set_xlim(-np.pi, np.pi) ax.set_ylim(-np.pi, np.pi) hl, = ax.plot([], [], 'b') #hl_real, = ax.plot([], [], 'r') hl_for, = ax.plot([], [], 'g') hl_back, = ax.plot([], [], 'r') hl_for_mpnet, = ax.plot([], [], 'lightgreen') hl_back_mpnet, = ax.plot([], [], 'salmon') #print(obs) def update_line(h, ax, new_data): new_data = wrap_angle(new_data, propagate_system) h.set_data(np.append(h.get_xdata(), new_data[0]), np.append(h.get_ydata(), new_data[1])) #h.set_xdata(np.append(h.get_xdata(), new_data[0])) #h.set_ydata(np.append(h.get_ydata(), new_data[1])) def remove_last_k(h, ax, k): h.set_data(h.get_xdata()[:-k], h.get_ydata()[:-k]) def draw_update_line(ax): #ax.relim() #ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events() #plt.show() def wrap_angle(x, system): circular = system.is_circular_topology() res = np.array(x) for i in range(len(x)): if circular[i]: # use our previously saved version res[i] = x[i] - np.floor(x[i] / (2 * np.pi)) * (2 * np.pi) if res[i] > np.pi: res[i] = res[i] - 2 * np.pi return res dtheta = 0.1 feasible_points = [] infeasible_points = [] imin = 0 imax = int(2 * np.pi / dtheta) for i in range(imin, imax): for j in range(imin, imax): x = np.array([dtheta * i - np.pi, dtheta * j - np.pi, 0., 0.]) if IsInCollision(x, obs_i): infeasible_points.append(x) else: feasible_points.append(x) feasible_points = np.array(feasible_points) infeasible_points = np.array(infeasible_points) print('feasible points') print(feasible_points) print('infeasible points') print(infeasible_points) ax.scatter(feasible_points[:, 0], feasible_points[:, 1], c='yellow') ax.scatter(infeasible_points[:, 0], infeasible_points[:, 1], c='pink') for i in range(len(data)): update_line(hl, ax, data[i]) draw_update_line(ax) state_t = start_state pick_goal_threshold = 0.10 goal_linear_inc_start_iter = int(0.6 * max_iteration) goal_linear_inc_end_iter = max_iteration goal_linear_inc_end_threshold = 0.95 goal_linear_inc = (goal_linear_inc_end_threshold - pick_goal_threshold) / (goal_linear_inc_end_iter - goal_linear_inc_start_iter) for i in range(max_iteration): print('iteration: %d' % (i)) print('state_t:') print(state_t) # calculate if using goal or not use_goal_prob = random.random() if i > goal_linear_inc_start_iter: pick_goal_threshold += goal_linear_inc if use_goal_prob <= pick_goal_threshold: flag = 0 else: flag = 1 bvp_x, bvp_u, bvp_t, mpnet_res = planner.plan_step("sst", propagate_system, psopt_system, obc.flatten(), state_t, goal_inform_state, goal_inform_state, \ flag, goal_radius, max_iteration, distance_computer, \ delta_near, delta_drain) plan_time = time.time() - time0 if len( bvp_u ) != 0: # and bvp_t[0] > 0.01: # turn bvp_t off if want to use step_bvp # propagate data p_start = bvp_x[0] detail_paths = [p_start] detail_controls = [] detail_costs = [] state = [p_start] control = [] cost = [] for k in range(len(bvp_u)): #state_i.append(len(detail_paths)-1) max_steps = int(bvp_t[k] / step_sz) accum_cost = 0. for step in range(1, max_steps + 1): p_start = dynamics(p_start, bvp_u[k], step_sz) p_start = enforce_bounds(p_start) detail_paths.append(p_start) accum_cost += step_sz if (step % 1 == 0) or (step == max_steps): state.append(p_start) cost.append(accum_cost) accum_cost = 0. xs_to_plot = np.array(state) for i in range(len(xs_to_plot)): xs_to_plot[i] = wrap_angle(xs_to_plot[i], propagate_system) #ax.scatter(xs_to_plot[:,0], xs_to_plot[:,1], c='green') ax.scatter(bvp_x[:, 0], bvp_x[:, 1], c='green', s=10.0) print('solution: x') print(bvp_x) print('solution: u') print(bvp_u) print('solution: t') print(bvp_t) # draw start and goal #ax.scatter(start_state[0], goal_state[0], marker='X') draw_update_line(ax) xw_scat = ax.scatter(mpnet_res[0], mpnet_res[1], c='brown', s=10.) draw_update_line(ax) #state_t = state[-1] # try using mpnet_res as new start state_t = mpnet_res else: # in incollision state_t = start_state #if len(res_x) == 0: # print('failed.') out_queue.put(0)