def _set_constant_mask(): # Assign mask tensor to be 1 for all nonzero values of op_var_tens otherwise 0 # On end step, revert mask to be all 1s with tf_compat.name_scope( PruningScope.model( op, ks_group, additional=PruningScope.OPS_UPDATE, trailing_slash=True, )): new_mask = tf_compat.cond( is_start_step, lambda: tf_compat.cast(tf_compat.not_equal(op_var_tens, 0.0), dtype=op_var_tens.dtype), lambda: tf_compat.ones(op_var_tens.shape, dtype=op_var_tens.dtype), ) weight_var = get_tensor_var(op_var_tens) return tf_compat.group( tf_compat.assign(mask, new_mask, name=PruningScope.OP_MASK_ASSIGN), tf_compat.assign(weight_var, masked, name=PruningScope.OP_WEIGHT_UPDATE), )
def multi_step_lr_schedule( global_step: tf_compat.Tensor, start_step: int, milestone_steps: List[int], init_lr: float, gamma: float, name: str = "multi_step_lr_schedule", ): """ Create a multi step learning rate schedule in the current graph. Multiplies init_lr by gamma after each milestone has passed. Ex: lr = init_lr * (gamma ** NUM_UPDATES) :param global_step: the global step used for training :param start_step: the step to start the exponential schedule on :param milestone_steps: a list of steps to decrease the learning rate at, these are the number of steps that must pass after start_step to decrease lr :param init_lr: the learning rate to start the schedule with :param gamma: the decay weight to decrease init_lr by after every step_size interval :param name: the name scope to create the graph under :return: the calculated learning rate tensor """ with tf_compat.name_scope(name): global_step = tf_compat.cast(global_step, tf_compat.int64) milestone_steps = tf_compat.constant( [mile + start_step for mile in milestone_steps], dtype=tf_compat.int64, name="milestone_steps", ) start_step = tf_compat.constant(start_step, dtype=tf_compat.int64, name="start_step") init_lr = tf_compat.constant(init_lr, dtype=tf_compat.float32, name="init_lr") gamma = tf_compat.constant(gamma, dtype=tf_compat.float32, name="gamma") before = tf_compat.less(global_step, start_step, name="before") def _calc_lr(): less = tf_compat.cast( tf_compat.greater_equal(global_step, milestone_steps), tf_compat.int64) updates = tf_compat.reduce_sum(less) mult_g = tf_compat.pow(gamma, tf_compat.cast(updates, tf_compat.float32)) return tf_compat.multiply(init_lr, mult_g) learning_rate = tf_compat.cond(before, lambda: init_lr, _calc_lr, name="learning_rate") return learning_rate
def create_op_pruning_no_update( op: tf_compat.Operation, op_input: tf_compat.Tensor, ks_group: str, leave_enabled: bool = True, is_after_end_step: tf_compat.Tensor = None, ) -> PruningOpVars: """ Creates the necessary variables and operators to gradually apply sparsity to an operators variable without returning a PruningOpVars.update value. :param op: the operation to prune to the given sparsity :param op_input: the parameter within the op to create a mask for :param ks_group: the group identifier the scope should be created under mask_creator :param leave_enabled: True to continue masking the weights after end_epoch, False to stop masking :param is_after_end_step: only should be provided if leave_enabled is False; tensor that is true if the current global step is after end_epoch :return: a named tuple containing the assignment op, mask variable, threshold tensor, and masked tensor """ if tf_contrib_err: raise tf_contrib_err op_sgv = graph_editor.sgv(op) # create the necessary variables first with tf_compat.variable_scope(PruningScope.model(op, ks_group), reuse=tf_compat.AUTO_REUSE): mask = tf_compat.get_variable( PruningScope.VAR_MASK, op_input.get_shape(), initializer=tf_compat.ones_initializer(), trainable=False, dtype=op_input.dtype, ) tf_compat.add_to_collection( PruningScope.collection_name(ks_group, PruningScope.VAR_MASK), mask) # create the masked operation and assign as the new input to the op with tf_compat.name_scope( PruningScope.model(op, ks_group, trailing_slash=True)): masked = tf_compat.multiply(mask, op_input, PruningScope.OP_MASKED_VAR) op_inp_tens = (masked if leave_enabled else tf_compat.cond( is_after_end_step, lambda: op_input, lambda: masked)) op_swapped_inputs = [ inp if inp != op_input else op_inp_tens for inp in op_sgv.inputs ] graph_editor.swap_inputs(op, op_swapped_inputs) tf_compat.add_to_collection( PruningScope.collection_name(ks_group, PruningScope.OP_MASKED_VAR), masked) return PruningOpVars(op, op_input, None, mask, masked)
def _calc_lr(): steps = tf_compat.subtract(global_step, start_step) updates = tf_compat.cond( after, lambda: max_updates, lambda: tf_compat.cast( tf_compat.floor(tf_compat.divide(steps, step_size)), tf_compat.int64, ), ) mult_g = tf_compat.pow(gamma, tf_compat.cast(updates, tf_compat.float32)) return tf_compat.multiply(init_lr, mult_g)
def cent_crop(img: tf_compat.Tensor): with tf_compat.name_scope(name): orig_shape = tf_compat.shape(img) min_size = tf_compat.cond( tf_compat.greater_equal(orig_shape[0], orig_shape[1]), lambda: orig_shape[1], lambda: orig_shape[0], ) if padding > 0: orig_shape_list = img.get_shape().as_list() resize((orig_shape_list[0] + 2 * padding, orig_shape_list[1] + 2 * padding)) padding_height = tf_compat.add( tf_compat.cast( tf_compat.round( tf_compat.div( tf_compat.cast( tf_compat.subtract(orig_shape[0], min_size), tf_compat.float32, ), 2.0, )), tf_compat.int32, ), padding, ) padding_width = tf_compat.add( tf_compat.cast( tf_compat.round( tf_compat.div( tf_compat.cast( tf_compat.subtract(orig_shape[1], min_size), tf_compat.float32, ), 2.0, )), tf_compat.int32, ), padding, ) img = tf_compat.image.crop_to_bounding_box(img, padding_height, padding_width, min_size, min_size) return img
def preprocess_for_train(image: tf_compat.Tensor): """ The default preprocessing function for train set as defined in Resnet paper for Cifar datasets :param image: the image tensor :return: the preprocessed image """ with tf_compat.name_scope("train_preprocess"): image = tf_compat.cast(image, dtype=tf_compat.float32) rand_choice = tf_compat.random_uniform(shape=[], minval=0, maxval=2, dtype=tf_compat.int32) padding = _PADDING image = tf_compat.cond( tf_compat.equal(rand_choice, 0), lambda: tf_compat.pad(image, [[padding, padding], [padding, padding], [0, 0]]), lambda: tf_compat.image.random_flip_left_right(image), ) distorted_image = tf_compat.image.random_crop(image, [32, 32, 3]) return distorted_image
def create_ks_schedule_ops( global_step: tf_compat.Variable, begin_step: int, end_step: int, update_step_freq: int, init_sparsity: float, final_sparsity: float, exponent: float, ks_group: str, ) -> Tuple[tf_compat.Tensor, tf_compat.Tensor]: """ Create a gradual schedule for model pruning (kernel sparsity). Creates a sparsity tensor that goes from init_sparsity til final_sparsity starting at begin_step and ending at end_step. Uses the global_step to map those. Additionally creates an update_ready tensor that is True if an update to the sparsity tensor should be run, False otherwise. :param global_step: the global optimizer step for the training graph :param begin_step: the global step to begin pruning at :param end_step: the global step to end pruning at :param update_step_freq: the number of global steps between each weight update :param init_sparsity: the starting value for sparsity of a weight tensor to be enforce :param final_sparsity: the end value for sparsity for a weight tensor to be enforce :param exponent: the exponent to use for interpolating between init_sparsity and final_sparsity higher values will lead to larger sparsity steps at the beginning vs the end ie: linear (1) vs cubic (3) :param ks_group: the group identifier the scope should be created under :return: a tuple containing the signal for update_ready and the target sparsity """ # create the scheduling ops first and the sparsity ops with tf_compat.name_scope( PruningScope.general(ks_group, additional=PruningScope.OPS_SCHEDULE, trailing_slash=True)): sched_before = tf_compat.less(global_step, begin_step) sched_start = tf_compat.equal(global_step, begin_step) sched_end = tf_compat.equal(global_step, end_step) sched_active = tf_compat.logical_and( tf_compat.greater(global_step, begin_step), tf_compat.less(global_step, end_step), ) sched_active_inclusive = tf_compat.logical_or( sched_active, tf_compat.logical_or(sched_start, sched_end)) sched_update = tf_compat.cond( tf_compat.less_equal(update_step_freq, 0), lambda: tf_compat.constant(True), lambda: tf_compat.equal( tf_compat.mod( (global_step - begin_step), update_step_freq), 0), ) sched_update_ready = tf_compat.logical_or( tf_compat.logical_or(sched_start, sched_end), sched_update) percentage = tf_compat.minimum( 1.0, tf_compat.maximum( 0.0, tf_compat_div( tf_compat.cast(global_step - begin_step, tf_compat.float32), end_step - begin_step, ), ), ) exp_percentage = 1 - tf_compat.pow(1 - percentage, exponent) calc_sparsity = (tf_compat.multiply(final_sparsity - init_sparsity, exp_percentage) + init_sparsity) # create the update ready tensor and sparsity tensor with tf_compat.name_scope( PruningScope.general(ks_group, trailing_slash=True)): update_ready = tf_compat.logical_and( sched_active_inclusive, sched_update_ready, name=PruningScope.OP_UPDATE_READY, ) sparsity = tf_compat.case( [ (sched_before, lambda: tf_compat.constant(0.0)), (sched_start, lambda: tf_compat.constant(init_sparsity)), (sched_active, lambda: calc_sparsity), ], default=lambda: tf_compat.constant(final_sparsity), name=PruningScope.OP_SPARSITY, ) # add return state to collections tf_compat.add_to_collection( PruningScope.collection_name(ks_group, PruningScope.OP_UPDATE_READY), update_ready, ) tf_compat.add_to_collection( PruningScope.collection_name(ks_group, PruningScope.OP_SPARSITY), sparsity) return update_ready, sparsity
def create_constant_op_pruning( op: tf_compat.Operation, op_input: tf_compat.Tensor, is_start_step: tf_compat.Tensor, is_end_step: tf_compat.Tensor, ks_group: str, ) -> PruningOpVars: """ Creates PruningOpVars with constant mask for the given operation on start step, sets mask to be all 1s for the weight tensor where the operation input is non zero and 0 elsewhere. At the end_step we revert the mask to be all 1s and update the weight. :param op: the operation to prune to the given sparsity :param op_input: the input tensor to op to create a constant mask for :param is_start_step: True only if we are at the start step. :param is_end_step: True only if we are at the start end step. :param ks_group: the group identifier the scope should be created under :return: a named tuple containing the assignment op, mask variable, threshold tensor, and masked tensor """ initial_vars = create_op_pruning_no_update(op, op_input, ks_group) op = initial_vars.op op_var_tens = initial_vars.op_input mask = initial_vars.mask masked = initial_vars.masked is_start_or_end_step = tf_compat.logical_or(is_start_step, is_end_step) def _set_constant_mask(): # Assign mask tensor to be 1 for all nonzero values of op_var_tens otherwise 0 # On end step, revert mask to be all 1s with tf_compat.name_scope( PruningScope.model( op, ks_group, additional=PruningScope.OPS_UPDATE, trailing_slash=True, )): new_mask = tf_compat.cond( is_start_step, lambda: tf_compat.cast(tf_compat.not_equal(op_var_tens, 0.0), dtype=op_var_tens.dtype), lambda: tf_compat.ones(op_var_tens.shape, dtype=op_var_tens.dtype), ) weight_var = get_tensor_var(op_var_tens) return tf_compat.group( tf_compat.assign(mask, new_mask, name=PruningScope.OP_MASK_ASSIGN), tf_compat.assign(weight_var, masked, name=PruningScope.OP_WEIGHT_UPDATE), ) def _no_op(): with tf_compat.name_scope( PruningScope.model( op, ks_group, additional=PruningScope.OPS_UPDATE, trailing_slash=True, )): # return no op wrapped in group to match update type return tf_compat.group( tf_compat.constant(0.0, dtype=op_var_tens.dtype, name=PruningScope.OP_MASK_UPDATE_NO_OP)) with tf_compat.name_scope( PruningScope.model( op, ks_group, additional=PruningScope.OPS_UPDATE, trailing_slash=True, )): mask_update = tf_compat.cond( is_start_or_end_step, _set_constant_mask, _no_op, name=PruningScope.OP_MASK_UPDATE, ) return PruningOpVars(op, op_var_tens, mask_update, mask, masked)
def create_op_pruning( op: tf_compat.Operation, op_input: tf_compat.Tensor, sparsity: tf_compat.Tensor, update_ready: tf_compat.Tensor, leave_enabled: bool, is_after_end_step: tf_compat.Tensor, ks_group: str, mask_creator: PruningMaskCreator, ) -> PruningOpVars: """ Creates the necessary variables and operators to gradually apply sparsity to an operators variable. Handles setting a mask on an operator to the given sparsity. Sets the mask based on pruning away the lowest absolute magnitude weights. :param op: the operation to prune to the given sparsity :param op_input: the variable of the parameter within op to prune :param sparsity: the target sparsity to use for assigning the masks :param update_ready: the tensor where if true will update the mask from sparsity, if false will not update the mask :param leave_enabled: True to continue masking the weights after end_epoch, False to stop masking :param is_after_end_step: tensor that is true if the current global step is after end_epoch :param ks_group: the group identifier the scope should be created under :param mask_creator: object to define sparisty mask creation :return: a named tuple containing the assignment op, mask variable, threshold tensor, and masked tensor """ initial_vars = create_op_pruning_no_update(op, op_input, ks_group, leave_enabled, is_after_end_step) op = initial_vars.op op_var_tens = initial_vars.op_input mask = initial_vars.mask masked = initial_vars.masked def _update(): # create the update ops using the target sparsity tensor with tf_compat.name_scope( PruningScope.model( op, ks_group, additional=PruningScope.OPS_UPDATE, trailing_slash=True, )): new_mask = mask_creator.create_sparsity_mask(op_var_tens, sparsity) weight_var = get_tensor_var(op_var_tens) return tf_compat.group( tf_compat.assign(mask, new_mask, name=PruningScope.OP_MASK_ASSIGN), tf_compat.assign( weight_var, tf_compat.multiply(new_mask, op_var_tens), name=PruningScope.OP_WEIGHT_UPDATE, ), ) def _no_update(): with tf_compat.name_scope( PruningScope.model( op, ks_group, additional=PruningScope.OPS_UPDATE, trailing_slash=True, )): # return no op wrapped in group to match update type return tf_compat.group( tf_compat.constant(0.0, dtype=op_var_tens.dtype, name=PruningScope.OP_MASK_UPDATE_NO_OP)) with tf_compat.name_scope( PruningScope.model( op, ks_group, additional=PruningScope.OPS_UPDATE, trailing_slash=True, )): mask_update = tf_compat.cond(update_ready, _update, _no_update, name=PruningScope.OP_MASK_UPDATE) # add return state to collections tf_compat.add_to_collection( PruningScope.collection_name(ks_group, PruningScope.OP_MASK_UPDATE), mask_update) return PruningOpVars(op, op_var_tens, mask_update, mask, masked)
def step_lr_schedule( global_step: tf_compat.Tensor, start_step: int, end_step: int, step_size: int, init_lr: float, gamma: float, name: str = "exponential_lr_schedule", ) -> tf_compat.Tensor: """ Create an exponential learning rate schedule in the current graph. Multiplies init_lr by gamma after each step_size interval has passed. Ex: lr = init_lr * (gamma ** NUM_UPDATES) :param global_step: the global step used for training :param start_step: the step to start the exponential schedule on :param end_step: the step to end the exponential schedule on, can be set to -1 and in that event will continually update the LR :param step_size: the number of steps between each gamma update to the init_lr :param init_lr: the learning rate to start the schedule with :param gamma: the decay weight to decrease init_lr by after every step_size interval :param name: the name scope to create the graph under :return: the calculated learning rate tensor """ with tf_compat.name_scope(name): global_step = tf_compat.cast(global_step, tf_compat.int64) max_updates = tf_compat.constant( (end_step - start_step) // step_size if end_step > 0 else -1, dtype=tf_compat.int64, name="max_updates", ) start_step = tf_compat.constant(start_step, dtype=tf_compat.int64, name="start_step") end_step = tf_compat.constant(end_step, dtype=tf_compat.int64, name="end_step") init_lr = tf_compat.constant(init_lr, dtype=tf_compat.float32, name="init_lr") step_size = tf_compat.constant(step_size, dtype=tf_compat.int64, name="step_size") gamma = tf_compat.constant(gamma, dtype=tf_compat.float32, name="gamma") before = tf_compat.less(global_step, start_step, name="before") after = tf_compat.logical_and( tf_compat.greater_equal(global_step, end_step, name="after"), tf_compat.not_equal(end_step, tf_compat.constant(-1, tf_compat.int64)), ) def _calc_lr(): steps = tf_compat.subtract(global_step, start_step) updates = tf_compat.cond( after, lambda: max_updates, lambda: tf_compat.cast( tf_compat.floor(tf_compat.divide(steps, step_size)), tf_compat.int64, ), ) mult_g = tf_compat.pow(gamma, tf_compat.cast(updates, tf_compat.float32)) return tf_compat.multiply(init_lr, mult_g) learning_rate = tf_compat.cond(before, lambda: init_lr, _calc_lr, name="learning_rate") return learning_rate