def _evaluate(self, ctx, deps): V, M, U = deps['V'], deps['M'], deps['U'] strata = _compute_strata(V) util.log_info('Start eval') for i, stratum in enumerate(strata): util.log_info('Processing stratum: %d of %d (size = %d)', i, len(strata), len(stratum)) #for ex in stratum: print ex worklist = set(stratum) expr.shuffle(V, sgd_netflix_mapper, kw={'V' : lazify(V), 'M' : lazify(M), 'U' : lazify(U), 'worklist' : worklist }).force() util.log_info('Eval done.')
def test_sparse_sum(self): x = expr.sparse_diagonal(ARRAY_SIZE).force() y = x.glom() print y.todense() x = expr.lazify(x) for axis in [None, 0, 1]: y = x.sum(axis) val = y.glom() print val
def examine_example(self, i, N, labels, kernel_results): ''' Check if the alpha_i can be optimized. It should satisfy the KKT condition. If so, choose it as one parameter to be optimized. Args: i(int): index of the alpha to be checked N(int): the number of features labels(Expr): the labels of the training data kernel_results(Expr): the result of the kernel function on the training data ''' Ei = self.E[i, 0] ai = self.alpha[i, 0] r = labels[i, 0] * Ei # check if satisfy KKT condition if r < -self.tol and ai < self.C or r > self.tol and ai > self.tol: alpha_expr = expr.lazify(self.alpha) active_set_mask = (alpha_expr > self.tol) * (alpha_expr < self.C) active_set = active_set_mask.glom().nonzero()[0] #print 'actives:', active_set # first check the jth example that maximize the |Ei - Ej| idxj = -1 if active_set.shape[0] > 1: active_E = expr.abs(expr.lazify(self.E) - Ei)[active_set_mask - True] idxj = np.argmax(active_E.glom()) if self.take_step(idxj, i, N, labels, kernel_results): return 1 # then check the examples in active_set for j in active_set: if j != idxj and self.take_step(j, i, N, labels, kernel_results): return 1 # finally check the other examples for j in xrange(N): if j not in active_set and self.take_step( j, i, N, labels, kernel_results): return 1 return 0
def examine_example(self, i, N, labels, kernel_results): """ Check if the alpha_i can be optimized. It should satisfy the KKT condition. If so, choose it as one parameter to be optimized. Args: i(int): index of the alpha to be checked N(int): the number of features labels(Expr): the labels of the training data kernel_results(Expr): the result of the kernel function on the training data """ Ei = self.E[i, 0] ai = self.alpha[i, 0] r = labels[i, 0] * Ei # check if satisfy KKT condition if r < -self.tol and ai < self.C or r > self.tol and ai > self.tol: alpha_expr = expr.lazify(self.alpha) active_set_mask = (alpha_expr > self.tol) * (alpha_expr < self.C) active_set = active_set_mask.glom().nonzero()[0] # print 'actives:', active_set # first check the jth example that maximize the |Ei - Ej| idxj = -1 if active_set.shape[0] > 1: active_E = expr.abs(expr.lazify(self.E) - Ei)[active_set_mask - True] idxj = np.argmax(active_E.glom()) if self.take_step(idxj, i, N, labels, kernel_results): return 1 # then check the examples in active_set for j in active_set: if j != idxj and self.take_step(j, i, N, labels, kernel_results): return 1 # finally check the other examples for j in xrange(N): if j not in active_set and self.take_step(j, i, N, labels, kernel_results): return 1 return 0
def _evaluate(self, ctx, deps): V, M, U = deps['V'], deps['M'], deps['U'] strata = _compute_strata(V) util.log_info('Start eval') for i, stratum in enumerate(strata): util.log_info('Processing stratum: %d of %d (size = %d)', i, len(strata), len(stratum)) #for ex in stratum: print ex worklist = set(stratum) expr.shuffle(V, sgd_netflix_mapper, kw={ 'V': lazify(V), 'M': lazify(M), 'U': lazify(U), 'worklist': worklist }).evaluate() util.log_info('Eval done.')
def _get_norm_of_each_item(self, rating_table): """Get norm of each item vector. For each Item, caculate the norm the item vector. Parameters ---------- rating_table : Spartan matrix of shape(M, N). Each column represents the rating of the item. Returns --------- item_norm: Spartan matrix of shape(N,). item_norm[i] equals || rating_table[:,i] || """ ctx = blob_ctx.get() if isinstance(rating_table, array.distarray.DistArray): rating_table = expr.lazify(rating_table) res = expr.sqrt(expr.sum(expr.multiply(rating_table, rating_table), axis=0, tile_hint=(rating_table.shape[1] / ctx.num_workers, ))) return res.force()
def train_smo_2005(self, data, labels): ''' Train an SVM model using the SMO (2005) algorithm. Args: data(Expr): points to be trained labels(Expr): the correct labels of the training data ''' N = data.shape[0] # Number of instances D = data.shape[1] # Number of features self.b = 0.0 alpha = expr.zeros((N,1), dtype=np.float64, tile_hint=[N/self.ctx.num_workers, 1]).force() # linear kernel kernel_results = expr.dot(data, expr.transpose(data), tile_hint=[N/self.ctx.num_workers, N]) gradient = expr.ones((N, 1), dtype=np.float64, tile_hint=[N/self.ctx.num_workers, 1]) * -1.0 expr_labels = expr.lazify(labels) util.log_info("Starting SMO") pv1 = pv2 = -1 it = 0 while it < self.maxiter: util.log_info("Iteration:%d", it) minObj = 1e100 expr_alpha = expr.lazify(alpha) G = expr.multiply(labels, gradient) * -1.0 v1_mask = ((expr_labels > self.tol) * (expr_alpha < self.C) + (expr_labels < -self.tol) * (expr_alpha > self.tol)) v1 = expr.argmax(G[v1_mask-True]).glom().item() maxG = G[v1,0].glom() print 'maxv1:', v1, 'maxG:', maxG v2_mask = ((expr_labels > self.tol) * (expr_alpha > self.tol) + (expr_labels < -self.tol) * (expr_alpha < self.C)) min_v2 = expr.argmin(G[v2_mask-True]).glom().item() minG = G[min_v2,0].glom() #print 'minv2:', min_v2, 'minG:', minG set_v2 = v2_mask.glom().nonzero()[0] #print 'actives:', set_v2.shape[0] v2 = -1 for v in set_v2: b = maxG - G[v,0].glom() if b > self.tol: na = (kernel_results[v1,v1] + kernel_results[v,v] - 2*kernel_results[v1,v]).glom()[0][0] if na < self.tol: na = 1e12 obj = -(b*b)/na if obj <= minObj and v1 != pv1 or v != pv2: v2 = v a = na minObj = obj if v2 == -1: break if maxG - minG < self.tol: break print 'opt v1:', v1, 'v2:', v2 pv1 = v1 pv2 = v2 y1 = labels[v1,0] y2 = labels[v2,0] oldA1 = alpha[v1,0] oldA2 = alpha[v2,0] # Calculate new alpha values, to reduce the objective function... b = y2*expr.glom(gradient[v2,0]) - y1*expr.glom(gradient[v1,0]) if y1 != y2: a += 4 * kernel_results[v1,v2].glom() newA1 = oldA1 + y1*b/a newA2 = oldA2 - y2*b/a # Correct for alpha being out of range... sum = y1*oldA1 + y2*oldA2; if newA1 < self.tol: newA1 = 0.0 elif newA1 > self.C: newA1 = self.C newA2 = y2 * (sum - y1 * newA1) if newA2 < self.tol: newA2 = 0.0; elif newA2 > self.C: newA2 = self.C newA1 = y1 * (sum - y2 * newA2) # Update the gradient... dA1 = newA1 - oldA1 dA2 = newA2 - oldA2 gradient += expr.multiply(labels, kernel_results[:,v1]) * y1 * dA1 + expr.multiply(labels, kernel_results[:,v2]) * y2 * dA2 alpha[v1,0] = newA1 alpha[v2,0] = newA2 #print 'alpha:', alpha.glom().T it += 1 #print 'gradient:', gradient.glom().T self.w = expr.zeros((D, 1), dtype=np.float64).force() for i in xrange(D): self.w[i,0] = expr.reduce(alpha, axis=None, dtype_fn=lambda input: input.dtype, local_reduce_fn=margin_mapper, accumulate_fn=np.add, fn_kw=dict(label=labels, data=expr.force(data[:,i]))).glom() self.b = 0.0 E = (labels - self.margins(data)).force() minB = -1e100 maxB = 1e100 actualB = 0.0 numActualB = 0 for i in xrange(N): ai = alpha[i,0] yi = labels[i,0] Ei = E[i,0] if ai < 1e-3: if yi < self.tol: maxB = min((maxB,Ei)) else: minB = max((minB,Ei)) elif ai > self.C - 1e-3: if yi < self.tol: minB = max((minB,Ei)) else: maxB = min((maxB,Ei)) else: numActualB += 1 actualB += (Ei - actualB) / float(numActualB) if numActualB > 0: self.b = actualB else: self.b = 0.5*(minB + maxB) self.usew_ = True print 'iteration finish:', it print 'b:', self.b print 'w:', self.w.glom()
def train_smo_2005(self, data, labels): ''' Train an SVM model using the SMO (2005) algorithm. Args: data(Expr): points to be trained labels(Expr): the correct labels of the training data ''' N = data.shape[0] # Number of instances D = data.shape[1] # Number of features self.b = 0.0 alpha = expr.zeros((N, 1), dtype=np.float64, tile_hint=[N / self.ctx.num_workers, 1]).force() # linear kernel kernel_results = expr.dot(data, expr.transpose(data), tile_hint=[N / self.ctx.num_workers, N]) gradient = expr.ones( (N, 1), dtype=np.float64, tile_hint=[N / self.ctx.num_workers, 1 ]) * -1.0 expr_labels = expr.lazify(labels) util.log_info("Starting SMO") pv1 = pv2 = -1 it = 0 while it < self.maxiter: util.log_info("Iteration:%d", it) minObj = 1e100 expr_alpha = expr.lazify(alpha) G = expr.multiply(labels, gradient) * -1.0 v1_mask = ((expr_labels > self.tol) * (expr_alpha < self.C) + (expr_labels < -self.tol) * (expr_alpha > self.tol)) v1 = expr.argmax(G[v1_mask - True]).glom().item() maxG = G[v1, 0].glom() print 'maxv1:', v1, 'maxG:', maxG v2_mask = ((expr_labels > self.tol) * (expr_alpha > self.tol) + (expr_labels < -self.tol) * (expr_alpha < self.C)) min_v2 = expr.argmin(G[v2_mask - True]).glom().item() minG = G[min_v2, 0].glom() #print 'minv2:', min_v2, 'minG:', minG set_v2 = v2_mask.glom().nonzero()[0] #print 'actives:', set_v2.shape[0] v2 = -1 for v in set_v2: b = maxG - G[v, 0].glom() if b > self.tol: na = (kernel_results[v1, v1] + kernel_results[v, v] - 2 * kernel_results[v1, v]).glom()[0][0] if na < self.tol: na = 1e12 obj = -(b * b) / na if obj <= minObj and v1 != pv1 or v != pv2: v2 = v a = na minObj = obj if v2 == -1: break if maxG - minG < self.tol: break print 'opt v1:', v1, 'v2:', v2 pv1 = v1 pv2 = v2 y1 = labels[v1, 0] y2 = labels[v2, 0] oldA1 = alpha[v1, 0] oldA2 = alpha[v2, 0] # Calculate new alpha values, to reduce the objective function... b = y2 * expr.glom(gradient[v2, 0]) - y1 * expr.glom(gradient[v1, 0]) if y1 != y2: a += 4 * kernel_results[v1, v2].glom() newA1 = oldA1 + y1 * b / a newA2 = oldA2 - y2 * b / a # Correct for alpha being out of range... sum = y1 * oldA1 + y2 * oldA2 if newA1 < self.tol: newA1 = 0.0 elif newA1 > self.C: newA1 = self.C newA2 = y2 * (sum - y1 * newA1) if newA2 < self.tol: newA2 = 0.0 elif newA2 > self.C: newA2 = self.C newA1 = y1 * (sum - y2 * newA2) # Update the gradient... dA1 = newA1 - oldA1 dA2 = newA2 - oldA2 gradient += expr.multiply( labels, kernel_results[:, v1]) * y1 * dA1 + expr.multiply( labels, kernel_results[:, v2]) * y2 * dA2 alpha[v1, 0] = newA1 alpha[v2, 0] = newA2 #print 'alpha:', alpha.glom().T it += 1 #print 'gradient:', gradient.glom().T self.w = expr.zeros((D, 1), dtype=np.float64).force() for i in xrange(D): self.w[i, 0] = expr.reduce(alpha, axis=None, dtype_fn=lambda input: input.dtype, local_reduce_fn=margin_mapper, accumulate_fn=np.add, fn_kw=dict(label=labels, data=expr.force( data[:, i]))).glom() self.b = 0.0 E = (labels - self.margins(data)).force() minB = -1e100 maxB = 1e100 actualB = 0.0 numActualB = 0 for i in xrange(N): ai = alpha[i, 0] yi = labels[i, 0] Ei = E[i, 0] if ai < 1e-3: if yi < self.tol: maxB = min((maxB, Ei)) else: minB = max((minB, Ei)) elif ai > self.C - 1e-3: if yi < self.tol: minB = max((minB, Ei)) else: maxB = min((maxB, Ei)) else: numActualB += 1 actualB += (Ei - actualB) / float(numActualB) if numActualB > 0: self.b = actualB else: self.b = 0.5 * (minB + maxB) self.usew_ = True print 'iteration finish:', it print 'b:', self.b print 'w:', self.w.glom()