def main(): global args global best_prec1 args = parser.parse_args() print('Training arguments:') for k, v in vars(args).items(): print('\t{}: {}'.format(k, v)) if args.data_name == 'ucf101': num_class = 101 elif args.data_name == 'hmdb51': num_class = 51 elif args.data_name == 'mine': num_class = 2 else: raise ValueError('Unknown dataset ' + args.data_name) model = Model(num_class, args.num_segments, args.representation, base_model=args.arch) print(model) if 'resnet3D' in args.arch: train_crop_min_ratio = 0.75 train_crop_min_scale = 0.25 mean = [0.4345, 0.4051, 0.3775] std = [0.2768, 0.2713, 0.2737] value_scale = 1 train_transform = Compose([ RandomResizedCrop( model.crop_size, (train_crop_min_scale, 1.0), (train_crop_min_ratio, 1.0 / train_crop_min_ratio)), RandomHorizontalFlip(), ToTensor(), ScaleValue(value_scale), Normalize(mean, std) ]) test_trainsform = Compose([ Resize(model.crop_size), CenterCrop(model.crop_size), ToTensor(), # range [0, 255] -> [0.0,1.0] ScaleValue(1), Normalize(mean, std) ]) train_loader = torch.utils.data.DataLoader( CoviarDataSet( args.data_root, args.data_name, video_list=args.train_list, num_segments=args.num_segments, representation=args.representation, transform=model.get_augmentation(), #train_transform, is_train=True, accumulate=(not args.no_accumulation), model_name=args.arch), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, worker_init_fn=worker_init_fn) val_loader = torch.utils.data.DataLoader( CoviarDataSet( args.data_root, args.data_name, video_list=args.test_list, num_segments=args.num_segments, representation=args.representation, transform=torchvision.transforms.Compose([ GroupScale(int(model.scale_size)), GroupCenterCrop(model.crop_size) ]), #test_trainsform, is_train=True, accumulate=(not args.no_accumulation), model_name=args.arch), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, worker_init_fn=worker_init_fn) model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda() cudnn.benchmark = True params_dict = dict(model.named_parameters()) params = [] for key, value in params_dict.items(): decay_mult = 0.0 if 'bias' in key else 1.0 if ('module.base_model.conv1' in key or 'module.base_model.bn1' in key or 'data_bn' in key) and args.representation in ['mv', 'residual']: lr_mult = 0.1 elif '.fc.' in key: lr_mult = 1.0 else: lr_mult = 0.01 params += [{ 'params': value, 'lr': args.lr, 'lr_mult': lr_mult, 'decay_mult': decay_mult }] #optimizer = torch.optim.SGD(params, weight_decay=0.001, momentum=0.9, nesterov=False) #scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=10) optimizer = torch.optim.Adam(params, weight_decay=args.weight_decay, eps=0.001) criterion = torch.nn.CrossEntropyLoss().cuda() for epoch in range(args.epochs): cur_lr = adjust_learning_rate(optimizer, epoch, args.lr_steps, args.lr_decay) #cur_lr = get_lr(optimizer) train(train_loader, model, criterion, optimizer, epoch, cur_lr) #prec1, prev_val_loss = validate(val_loader, model, criterion) #scheduler.step(prev_val_loss) if epoch % args.eval_freq == 0 or epoch == args.epochs - 1: prec1, _ = validate(val_loader, model, criterion) # 紀錄訓練歷程 np.savez("train_history/train_history.npz", loss=np.array(train_loss), top1=np.array(train_prec), lr=np.array(train_lr)) np.savez("train_history/valid_history.npz", loss=np.array(valid_loss), top1=np.array(valid_prec)) is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) if is_best or epoch % SAVE_FREQ == 0: save_checkpoint( { 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, }, is_best, filename='checkpoint.pth.tar')
def get_train_utils(opt, model_parameters): assert opt.train_crop in ['random', 'corner', 'center'] spatial_transform = [] if opt.train_crop == 'random': spatial_transform.append( RandomResizedCrop( opt.sample_size, (opt.train_crop_min_scale, 1.0), (opt.train_crop_min_ratio, 1.0 / opt.train_crop_min_ratio))) elif opt.train_crop == 'corner': scales = [1.0] scale_step = 1 / (2**(1 / 4)) for _ in range(1, 5): scales.append(scales[-1] * scale_step) spatial_transform.append(MultiScaleCornerCrop(opt.sample_size, scales)) elif opt.train_crop == 'center': spatial_transform.append(Resize(opt.sample_size)) spatial_transform.append(CenterCrop(opt.sample_size)) normalize = get_normalize_method(opt.mean, opt.std, opt.no_mean_norm, opt.no_std_norm) if not opt.no_hflip: spatial_transform.append(RandomHorizontalFlip()) if opt.colorjitter: spatial_transform.append(ColorJitter()) spatial_transform.append(ToTensor()) if opt.input_type == 'flow': spatial_transform.append(PickFirstChannels(n=2)) spatial_transform.append(ScaleValue(opt.value_scale)) spatial_transform.append(normalize) spatial_transform = Compose(spatial_transform) assert opt.train_t_crop in ['random', 'center'] temporal_transform = [] if opt.sample_t_stride > 1: temporal_transform.append(TemporalSubsampling(opt.sample_t_stride)) if opt.train_t_crop == 'random': temporal_transform.append(TemporalRandomCrop(opt.sample_duration)) elif opt.train_t_crop == 'center': temporal_transform.append(TemporalCenterCrop(opt.sample_duration)) temporal_transform = TemporalCompose(temporal_transform) train_data = get_training_data(opt.video_path, opt.annotation_path, opt.dataset, opt.input_type, opt.file_type, spatial_transform, temporal_transform) if opt.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_data) else: train_sampler = None train_loader = torch.utils.data.DataLoader(train_data, batch_size=opt.batch_size, shuffle=(train_sampler is None), num_workers=opt.n_threads, pin_memory=True, sampler=train_sampler, worker_init_fn=worker_init_fn) if opt.is_master_node: train_logger = Logger(opt.result_path / 'train.log', ['epoch', 'loss', 'acc', 'lr']) train_batch_logger = Logger( opt.result_path / 'train_batch.log', ['epoch', 'batch', 'iter', 'loss', 'acc', 'lr']) else: train_logger = None train_batch_logger = None if opt.nesterov: dampening = 0 else: dampening = opt.dampening optimizer = SGD(model_parameters, lr=opt.learning_rate, momentum=opt.momentum, dampening=dampening, weight_decay=opt.weight_decay, nesterov=opt.nesterov) assert opt.lr_scheduler in ['plateau', 'multistep'] assert not (opt.lr_scheduler == 'plateau' and opt.no_val) if opt.lr_scheduler == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau( optimizer, 'min', patience=opt.plateau_patience) else: scheduler = lr_scheduler.MultiStepLR(optimizer, opt.multistep_milestones) return (train_loader, train_sampler, train_logger, train_batch_logger, optimizer, scheduler)
def get_train_utils(opt, model_parameters): assert opt.train_crop in ['random', 'corner', 'center'] spatial_transform = [] if opt.train_crop == 'random': spatial_transform.append( RandomResizedCrop( opt.sample_size, (opt.train_crop_min_scale, 1.0), (opt.train_crop_min_ratio, 1.0 / opt.train_crop_min_ratio))) elif opt.train_crop == 'corner': scales = [1.0] scale_step = 1 / (2**(1 / 4)) for _ in range(1, 5): scales.append(scales[-1] * scale_step) spatial_transform.append(MultiScaleCornerCrop(opt.sample_size, scales)) elif opt.train_crop == 'center': spatial_transform.append(Resize(opt.sample_size)) spatial_transform.append(CenterCrop(opt.sample_size)) normalize = get_normalize_method(opt.mean, opt.std, opt.no_mean_norm, opt.no_std_norm) if not opt.no_hflip: spatial_transform.append(RandomHorizontalFlip()) spatial_transform.append(ToArray()) if opt.colorjitter: spatial_transform.append(ColorJitter()) if opt.input_type == 'flow': spatial_transform.append(PickFirstChannels(n=2)) spatial_transform.append(ScaleValue(opt.value_scale)) spatial_transform.append(normalize) spatial_transform = Compose(spatial_transform) assert opt.train_t_crop in ['random', 'center'] temporal_transform = [] if opt.sample_t_stride > 1: temporal_transform.append(TemporalSubsampling(opt.sample_t_stride)) if opt.train_t_crop == 'random': temporal_transform.append(TemporalRandomCrop(opt.sample_duration)) elif opt.train_t_crop == 'center': temporal_transform.append(TemporalCenterCrop(opt.sample_duration)) temporal_transform = TemporalCompose(temporal_transform) train_data = get_training_data(opt.video_path, opt.annotation_path, opt.dataset, opt.input_type, opt.file_type, spatial_transform, temporal_transform) train_loader = paddle.batch(train_data.reader, batch_size=opt.batch_size) train_logger = Logger(opt.result_path / 'train.log', ['epoch', 'loss', 'acc', 'lr']) train_batch_logger = Logger( opt.result_path / 'train_batch.log', ['epoch', 'batch', 'iter', 'loss', 'acc', 'lr']) assert opt.lr_scheduler in ['plateau', 'multistep'] assert not (opt.lr_scheduler == 'plateau' and opt.no_val) if opt.lr_scheduler == 'plateau': scheduler = ReduceLROnPlateau(learning_rate=opt.learning_rate, mode='min', patience=opt.plateau_patience) else: scheduler = MultiStepDecay(learning_rate=opt.learning_rate, milestones=opt.multistep_milestones) optimizer = fluid.optimizer.MomentumOptimizer( learning_rate=scheduler, momentum=opt.momentum, parameter_list=model_parameters, use_nesterov=opt.nesterov, regularization=fluid.regularizer.L2Decay( regularization_coeff=opt.weight_decay)) return (train_loader, train_logger, train_batch_logger, optimizer, scheduler)