def main():
    """Visually test the addition of Noise using add_noise function."""
    org_flux = np.ones(500)
    for i, snr in enumerate([50, 100, 200, 300, 50000]):
        # Test that the standard deviation of the noise is close to the snr level

        print("Applying a snr of {}".format(snr))
        noisey_flux = add_noise(org_flux, snr)

        spec = Spectrum(
            flux=copy.copy(org_flux))  # Copy becasue org_flux is mutable.
        spec.add_noise(snr)

        std = np.std(noisey_flux)
        print("Standard deviation of signal = {}".format(std))
        snr_est = 1 / std
        snr_spectrum = 1. / np.std(spec.flux)
        print(
            "Estimated SNR from stddev                   = {}".format(snr_est))
        print("Estimated SNR from stddev of Spectrum class = {}".format(
            snr_spectrum))
        plt.plot(noisey_flux + 0.1 * i, label="snr={}".format(snr))
        plt.plot(spec.flux + 0.1 * i,
                 "--",
                 label="Spectrum snr={}".format(snr))

        # Calculate chisqr from one
        chi2 = np.sum((noisey_flux - 1)**2 / 1**2)
        print("Chisqr for SNR          {} = \t\t{}".format(snr, chi2))
        chi2_spectrum = np.sum((spec.flux - 1)**2 / 1**2)
        print("Chisqr for snr_spectrum {} = \t\t{}".format(snr, chi2_spectrum))

    plt.legend()
    plt.show()
def load_spectrum(name, corrected=True):
    """Load in fits file and return as a Spectrum object.

    Parameters
    ----------
    name: str
        Filename of spectrum.
    corrected: bool
        Use telluric corrected spectra. Default = True.

    Returns
    -------
    spectrum: Spectrum
        Spectra loaded into a Spectrum object.

    """
    data = fits.getdata(name)
    hdr = fits.getheader(name)
    # Turn into Spectrum
    # Check for telluric corrected column
    if corrected:
        spectrum = Spectrum(xaxis=data["wavelength"],
                            flux=data["Corrected_DRACS"],
                            header=hdr)
    else:
        spectrum = Spectrum(xaxis=data["wavelength"],
                            flux=data["Extracted_DRACS"],
                            header=hdr)
    return spectrum
def fake_obs(simnum, snr=200, suffix=None, plot=False, mode="iam"):
    snr = 200

    params1 = [5300, 4.5, 0.0]
    params2 = [2500, 4.5, 0.0]
    gamma = 5
    rv = -3
    normalization_limits = [2100, 2180]

    mod1_spec = load_starfish_spectrum(params1,
                                       limits=normalization_limits,
                                       hdr=True,
                                       normalize=False,
                                       area_scale=True,
                                       flux_rescale=True)

    mod2_spec = load_starfish_spectrum(params2,
                                       limits=normalization_limits,
                                       hdr=True,
                                       normalize=False,
                                       area_scale=True,
                                       flux_rescale=True)

    if broadcast:
        broadcast_result = inherent_alpha_model(mod1_spec.xaxis,
                                                mod1_spec.flux,
                                                mod2_spec.flux,
                                                rvs=rv,
                                                gammas=gamma)

        broadcast_values = broadcast_result(obs_spec.xaxis)
        result_spectrum = Spectrum(flux=broadcast_values,
                                   xaxis=mod1_spec.xaxis)
    else:
        # Manually redo the join
        mod2_spec.doppler_shift(rv)
        mod_combine = mod1_spec.copy()
        mod_combine += mod2_spec
        mod_combine.doppler_shift(gamma)
        mod_combine.normalize(method="exponential")
        mod_combine.interpolate(obs_spec.xaxis)
        result_spectrum = mod_combine
        # result_spectrum = Spectrum(flux=broadcast_values, xaxis=obs_spec.xaxis)

    result_spectrum.add_noise(snr)

    # Save as
    # Detector limits
    dect_limits = [(2112, 2123), (2127, 2137), (2141, 2151), (2155, 2165)]

    for ii, dect in enumerate(dect_limits):
        spec = result_spectrum.copy()
        spec.wav_select(*dect)
        spec.resample(1024)

        name = "HDsim-{0}_{1}_snr_{2}".format(sim_num, ii, snr)
def join_with_manual_doppler(mod1, mod2, rv, gamma):
    mod2 = mod2.copy()
    x1, y1 = doppler(mod2.xaxis, mod2.flux, rv)

    combine = mod1.copy()
    combine += Spectrum(xaxis=x1, flux=y1)

    x2, y2 = doppler(combine.xaxis, combine.flux, gamma)

    return Spectrum(xaxis=x2, flux=y2)
def test_continuum_alpha(chip):
    x = np.linspace(2100, 2180, 100)
    model1 = Spectrum(xaxis=x, flux=np.ones(len(x)))
    model2 = model1 * 2
    alpha = continuum_alpha(model1, model2, chip)

    assert np.allclose(alpha, [2])
def join_with_broadcast_spectrum(mod1, mod2, rv, gamma, new_x):
    broadcast_result = inherent_alpha_model(mod1.xaxis,
                                            mod1.flux,
                                            mod2.flux,
                                            rvs=rv,
                                            gammas=gamma)

    broadcast_values = broadcast_result(new_x)
    return Spectrum(flux=broadcast_values.squeeze(), xaxis=new_x)
def load_model_spec(pathwave, specpath, limits=None, normalize=False):
    """Load model spec from given path to file and wavefile."""
    w_mod = fits.getdata(pathwave)
    w_mod /= 10  # turn into nm
    flux = fits.getdata(specpath)
    hdr = fits.getheader(specpath)
    spec = Spectrum(xaxis=w_mod, flux=flux, header=hdr)

    logging.debug(pv("spec.xaxis"))
    if limits is not None:
        """Apply wavelength limits with slicing."""
        spec.wav_select(*limits)

    if normalize:
        """Apply normalization to loaded spectrum."""
        if limits is None:
            print("Warning! Limits should be given when using normalization")
            print("specturm for normalize", spec)
        spec = spec_local_norm(spec)
    return spec
示例#8
0
    def __post_init__(self):
        self.wavelength = np.asarray(self.wavelength)
        self.flux = np.asarray(self.flux)
        val_spectroscopy.check_input(self.wavelength, self.flux, self.unit)

        if self.unit != Wavelength.AA:
            print('Converting the wavelength to Angstrom')
            self.wavelength = self.wavelength * self.unit.value['conversion']
            if self.unit == Wavelength.ICM:
                self.wavelength = self.wavelength[::-1]
                self.flux = self.flux[::-1]
            self.unit = Wavelength.AA
        self.spectrum: Spectrum = Spectrum(self.flux, self.wavelength)
示例#9
0
def barycorr_crires_spectrum(spectrum, extra_offset=None):
    """Wrapper to apply barycorr for CRIRES spectra if given a Spectrum object."""
    if spectrum.header.get("BARYDONE", False):
        warnings.warn("Spectrum already berv corrected")
        if (extra_offset is not None) or (extra_offset != 0):
            warnings.warn("Only applying the extra offset.")
            _, nflux = barycorr_crires(spectrum.xaxis,
                                       spectrum.flux, {},
                                       extra_offset=extra_offset)
        else:
            warnings.warn("Not changing spectrum.")
            return spectrum
    else:
        _, nflux = barycorr_crires(spectrum.xaxis,
                                   spectrum.flux,
                                   spectrum.header,
                                   extra_offset=extra_offset)

    new_spectrum = Spectrum(flux=nflux,
                            xaxis=spectrum.xaxis,
                            header=spectrum.header)
    new_spectrum.header["BARYDONE"] = True
    return new_spectrum
def save_fake_observation(spectrum: Spectrum,
                          star: str,
                          sim_num: int,
                          params1: str,
                          params2: Optional[str] = None,
                          gamma: Optional[int] = None,
                          rv: Optional[int] = None,
                          noise: None = None,
                          replace: bool = False,
                          noplots: bool = False) -> None:
    # Detector limits
    detector_limits = [(2112, 2123), (2127, 2137), (2141, 2151), (2155, 2165)]
    npix = 1024

    header = fits.Header.fromkeys({})
    for ii, detector in enumerate(detector_limits):
        spec = spectrum.copy()
        spec.wav_select(*detector)
        spec.interpolate1d_to(np.linspace(spec.xaxis[0], spec.xaxis[-1], npix))

        if not noplots:
            plt.plot(spec.xaxis, spec.flux)
            plt.title("Fake spectrum {0} {1} detector {2}".format(
                star, sim_num, ii + 1))
            plt.show()
        name = obs_name_template().format(star, sim_num, ii + 1)
        # name = "{0}-{1}-mixavg-tellcorr_{2}.fits".format(star, sim_num, ii + 1)
        name = os.path.join(simulators.paths["spectra"], name)
        # spec.save...
        hdrkeys = [
            "OBJECT", "Id_sim", "num", "chip", "snr", "c_gamma", "cor_rv",
            "host", "compan"
        ]
        hdrvals = [
            star, "Fake simulation data", sim_num, ii + 1, noise, gamma, rv,
            params1, params2
        ]
        if os.path.exists(name) and not replace:
            print(name, "Already exists")
        else:
            if os.path.exists(name):
                print("Replacing {0}".format(name))
                os.remove(name)
            export_fits(name, spec.xaxis, spec.flux, header, hdrkeys, hdrvals)
            print("Saved fits to {0}".format(name))
def apply_convolution(model_spectrum, R=None, chip_limits=None):
    """Apply convolution to spectrum object."""
    if chip_limits is None:
        chip_limits = (np.min(model_spectrum.xaxis),
                       np.max(model_spectrum.xaxis))

    if R is None:
        return copy.copy(model_spectrum)
    else:
        ip_xaxis, ip_flux = ip_convolution(model_spectrum.xaxis[:],
                                           model_spectrum.flux[:], chip_limits,
                                           R, fwhm_lim=5.0, plot=False, progbar=True)

        new_model = Spectrum(xaxis=ip_xaxis, flux=ip_flux,
                             calibrated=model_spectrum.calibrated,
                             header=model_spectrum.header)

        return new_model
def load_phoenix_spectrum(phoenix_name, limits=None, normalize=False):
    wav_dir = simulators.starfish_grid["raw_path"]
    wav_model = fits.getdata(
        os.path.join(wav_dir, "WAVE_PHOENIX-ACES-AGSS-COND-2011.fits"))
    wav_model /= 10  # turn into nanometers
    flux = fits.getdata(phoenix_name)
    spec = Spectrum(flux=flux, xaxis=wav_model)

    # Limit to K band
    spec.wav_select(2070, 2350)
    if normalize:
        spec = spec_local_norm(spec, method="exponential")

    if limits is not None:
        spec.wav_select(*limits)
    return spec
示例#13
0
def load_spectrum(name):
    """Load in fits file and return as a Spectrum object.

    Tries multiple names for flux column from past implementations.

    Parameters
    ----------
    name: str
        Filename of spectrum.

    Returns
    -------
    spectrum: Spectrum
        Spectra loaded into a Spectrum object.

    """
    data = fits.getdata(name)
    hdr = fits.getheader(name)

    # TODO: log lambda sampling.
    #      see starfish

    # Turn into Spectrum
    xaxis = data["wavelength"]
    try:
        flux = data["flux"]
    except KeyError:
        try:
            flux = data["Corrected_DRACS"]
        except KeyError:
            try:
                flux = data["Extracted_DRACS"]
            except KeyError:
                print("The fits columns are {}".format(data.columns))
                raise

    spectrum = Spectrum(xaxis=xaxis, flux=flux, header=hdr)
    return spectrum
def main():
    """Main function."""
    star = "HD30501"
    host_parameters = load_param_file(star)
    obsnum = 1
    chip = 1
    obs_name = select_observation(star, obsnum, chip)

    # Load observation
    # uncorrected_spectra = load_spectrum(obs_name)
    observed_spectra = load_spectrum(obs_name)
    _observed_spectra = barycorr_crires_spectrum(observed_spectra,
                                                 extra_offset=None)
    observed_spectra.flux /= 1.02

    obs_resolution = crires_resolution(observed_spectra.header)

    wav_model = fits.getdata(
        os.path.join(wav_dir, "WAVE_PHOENIX-ACES-AGSS-COND-2011.fits"))
    wav_model /= 10  # turn into nm
    logging.debug(__("Phoenix wav_model = {0}", wav_model))

    closest_model = phoenix_name_from_params(model_base_dir, host_parameters)
    original_model = "Z-0.0/lte05200-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits"
    logging.debug(__("closest_model {0}", closest_model))
    logging.debug(__("original_model {0}", original_model))

    # Function to find the good models I need
    models = find_phoenix_model_names(model_base_dir, original_model)
    if isinstance(models, list):
        logging.debug(__("Number of close models returned {0}", len(models)))

    model_chisqr_vals = np.empty_like(models)
    model_xcorr_vals = np.empty_like(models)
    model_xcorr_rv_vals = np.empty_like(models)

    for ii, model_name in enumerate(models):
        mod_flux = fits.getdata(model_name)
        mod_header = fits.getheader(model_name)
        mod_spectrum = Spectrum(xaxis=wav_model,
                                flux=mod_flux,
                                header=mod_header,
                                calibrated=True)

        # Normalize Phoenix Spectrum
        # mod_spectrum.wav_select(2080, 2200)  # limits for simple normalization
        mod_spectrum.wav_select(2105, 2165)  # limits for simple normalization
        # norm_mod_spectrum = simple_normalization(mod_spectrum)
        norm_mod_spectrum = spec_local_norm(mod_spectrum, plot=False)

        # Wav select
        norm_mod_spectrum.wav_select(
            np.min(observed_spectra.xaxis) - 5,
            np.max(observed_spectra.xaxis) +
            5)  # +- 5nm of obs for convolution

        # Convolve to resolution of instrument
        conv_mod_spectrum = convolve_models([norm_mod_spectrum],
                                            obs_resolution,
                                            chip_limits=None)[0]

        # Find crosscorrelation RV
        # # Should run though all models and find best rv to apply uniformly
        rvoffset, cc_max = xcorr_peak(observed_spectra,
                                      conv_mod_spectrum,
                                      plot=False)

        # Interpolate to obs
        conv_mod_spectrum.spline_interpolate_to(observed_spectra)
        # conv_mod_spectrum.interpolate1d_to(observed_spectra)
        model_chi_val = chi_squared(observed_spectra.flux,
                                    conv_mod_spectrum.flux)

        # argmax = np.argmax(cc_max)
        model_chisqr_vals[ii] = model_chi_val
        model_xcorr_vals[ii] = cc_max
        model_xcorr_rv_vals[ii] = rvoffset

    logging.debug(pv("model_chisqr_vals"))
    logging.debug(pv("model_xcorr_vals"))
    chisqr_argmin_indx = np.argmin(model_chisqr_vals)
    xcorr_argmax_indx = np.argmax(model_xcorr_vals)

    logging.debug(pv("chisqr_argmin_indx"))
    logging.debug(pv("xcorr_argmax_indx"))

    logging.debug(pv("model_chisqr_vals"))
    print("Minimum  Chisqr value =",
          model_chisqr_vals[chisqr_argmin_indx])  # , min(model_chisqr_vals)
    print("Chisqr at max correlation value",
          model_chisqr_vals[chisqr_argmin_indx])

    print("model_xcorr_vals = {}".format(model_xcorr_vals))
    print("Maximum Xcorr value =",
          model_xcorr_vals[xcorr_argmax_indx])  # , max(model_xcorr_vals)
    print("Xcorr at min Chiqsr", model_xcorr_vals[chisqr_argmin_indx])

    logging.debug(pv("model_xcorr_rv_vals"))
    print("RV at max xcorr =", model_xcorr_rv_vals[xcorr_argmax_indx])
    # print("Median RV val =", np.median(model_xcorr_rv_vals))
    print(pv("model_xcorr_rv_vals[chisqr_argmin_indx]"))
    # print(pv("sp.stats.mode(np.around(model_xcorr_rv_vals))"))

    print("Max Correlation model = ",
          models[xcorr_argmax_indx].split("/")[-2:])
    print("Min Chisqr model = ", models[chisqr_argmin_indx].split("/")[-2:])

    limits = [2110, 2160]
    best_model = models[chisqr_argmin_indx]
    best_model_spec = load_phoenix_spectrum(best_model,
                                            limits=limits,
                                            normalize=True)
    best_model_spec = convolve_models([best_model_spec],
                                      obs_resolution,
                                      chip_limits=None)[0]

    best_xcorr_model = models[xcorr_argmax_indx]
    best_xcorr_model_spec = load_phoenix_spectrum(best_xcorr_model,
                                                  limits=limits,
                                                  normalize=True)
    best_xcorr_model_spec = convolve_models([best_xcorr_model_spec],
                                            obs_resolution,
                                            chip_limits=None)[0]

    close_model_spec = load_phoenix_spectrum(closest_model[0],
                                             limits=limits,
                                             normalize=True)
    close_model_spec = convolve_models([close_model_spec],
                                       obs_resolution,
                                       chip_limits=None)[0]

    plt.plot(observed_spectra.xaxis,
             observed_spectra.flux,
             label="Observations")
    plt.plot(best_model_spec.xaxis, best_model_spec.flux, label="Best Model")
    plt.plot(best_xcorr_model_spec.xaxis,
             best_xcorr_model_spec.flux,
             label="Best xcorr Model")
    plt.plot(close_model_spec.xaxis,
             close_model_spec.flux,
             label="Close Model")
    plt.legend()
    plt.xlim(*limits)
    plt.show()
    print("After plot")
示例#15
0
def main(star,
         obsnum,
         teff_1,
         logg_1,
         feh_1,
         teff_2,
         logg_2,
         feh_2,
         gamma,
         rv,
         plot_name=None):
    fig, axis = plt.subplots(2, 2, figsize=(15, 8), squeeze=False)

    for chip, ax in zip(range(1, 5), axis.flatten()):
        # Get observation data
        obs_name, params, output_prefix = iam_helper_function(
            star, obsnum, chip)

        # Load observed spectrum
        obs_spec = load_spectrum(obs_name)

        # Mask out bad portion of observed spectra
        obs_spec = spectrum_masking(obs_spec, star, obsnum, chip)

        # Barycentric correct spectrum
        _obs_spec = barycorr_crires_spectrum(obs_spec, extra_offset=None)

        # Determine Spectrum Errors
        # error_off = False
        # errors = spectrum_error(star, obsnum, chip, error_off=error_off)

        # Create model with given parameters
        host = load_starfish_spectrum([teff_1, logg_1, feh_1],
                                      limits=[2110, 2165],
                                      area_scale=True,
                                      hdr=True)
        if teff_2 is None:
            assert (logg_2 is None) and (feh_2 is None) and (
                rv == 0), "All must be None for bhm case."
            companion = Spectrum(xaxis=host.xaxis,
                                 flux=np.zeros_like(host.flux))
        else:
            companion = load_starfish_spectrum([teff_2, logg_2, feh_2],
                                               limits=[2110, 2165],
                                               area_scale=True,
                                               hdr=True)

        joint_model = inherent_alpha_model(host.xaxis,
                                           host.flux,
                                           companion.flux,
                                           gammas=gamma,
                                           rvs=rv)

        model_spec = Spectrum(xaxis=host.xaxis,
                              flux=joint_model(host.xaxis).squeeze())
        model_spec = model_spec.remove_nans()
        model_spec = model_spec.normalize("exponential")

        # plot
        obs_spec.plot(axis=ax, label="{}-{}".format(star, obsnum))
        model_spec.plot(axis=ax, linestyle="--", label="Chi-squared model")
        ax.set_xlim([obs_spec.xmin() - 0.5, obs_spec.xmax() + 0.5])

        ax.set_title("{} obs {} chip {}".format(star, obsnum, chip))
        ax.legend()
    plt.tight_layout()

    if plot_name is None:
        fig.show()
    else:
        if not (plot_name.endswith(".png") or plot_name.endswith(".pdf")):
            raise ValueError("plot_name does not end with .pdf or .png")
        fig.savefig(plot_name)

    return 0
    obs_resolution = crires_resolution(observed_spectra.header)

    wav_model = fits.getdata(model_base_dir +
                             "WAVE_PHOENIX-ACES-AGSS-COND-2011.fits")
    wav_model /= 10  # turn into nm

    temp_store = []
    rv_store = []
    cc_store = []
    chi2_store = []

    for model in tqdm(phoenix_names):
        temp_store.append(int(model.split("/")[-1][3:8]))
        phoenix_data = fits.getdata(model)
        phoenix_spectrum = Spectrum(flux=phoenix_data,
                                    xaxis=wav_model,
                                    calibrated=True)

        phoenix_spectrum.wav_select(*wl_limits)
        phoenix_spectrum = spec_local_norm(phoenix_spectrum)
        phoenix_spectrum = apply_convolution(phoenix_spectrum,
                                             R=obs_resolution,
                                             chip_limits=wl_limits)
        rv, cc = observed_spectra.crosscorr_rv(phoenix_spectrum,
                                               rvmin=-100.,
                                               rvmax=100.0,
                                               drv=0.1,
                                               mode='doppler',
                                               skipedge=50)

        maxind = np.argmax(cc)
示例#17
0
bd_model = "/home/jneal/Phd/data/phoenixmodels/" \
           "HD30501b-lte02500-5.00-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits"
star_model = "/home/jneal/Phd/data/phoenixmodels/" \
             "HD30501-lte05200-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits"

i_bdmod = fits.getdata(bd_model)
i_star = fits.getdata(star_model)
hdr_bd = fits.getheader(bd_model)
hdr_star = fits.getheader(star_model)
w_mod = fits.getdata(pathwave)

w_mod /= 10  # turn into nm

test_rv = -15.205  # km/s

template_spectrum = Spectrum(xaxis=w_mod, flux=i_star, calibrated=True)
template_spectrum.wav_select(2100, 2200)

obs_spectrum = Spectrum(xaxis=w_mod, flux=i_star, calibrated=True)
obs_spectrum.doppler_shift(test_rv)
obs_spectrum.wav_select(2100, 2200)

print(len(obs_spectrum.xaxis))

rv, cc = pyasl.crosscorrRV(obs_spectrum.xaxis,
                           obs_spectrum.flux,
                           template_spectrum.xaxis,
                           template_spectrum.flux,
                           rvmin=-60.,
                           rvmax=60.0,
                           drv=0.1,
def main(star,
         sim_num,
         params1=None,
         params2=None,
         gamma=None,
         rv=None,
         noise=None,
         test=False,
         replace=False,
         noplots=False,
         mode="iam",
         fudge=None,
         area_scale=True):
    star = star.upper()

    if gamma is None:
        gamma = 0
    if rv is None:
        rv = 0

    if params1 is not None:
        params_1 = [float(par) for par in params1.split(",")]
    else:
        raise ValueError("No host parameter given. Use '-p'")

    if mode == "iam":
        if params2 is not None:
            params_2 = [float(par) for par in params2.split(",")]
        else:
            raise ValueError(
                "No companion parameter given. Use '-q', or set '--mode bhm'")

        if test:
            testing_noise(star, sim_num, params_1, params_2, gamma, rv)
            testing_fake_spectrum(star,
                                  sim_num,
                                  params_1,
                                  params_2,
                                  gamma,
                                  rv,
                                  noise=None)
        else:
            x_wav, y_wav, header = fake_iam_simulation(None,
                                                       params_1,
                                                       params_2,
                                                       gamma=gamma,
                                                       rv=rv,
                                                       noise=noise,
                                                       header=True,
                                                       fudge=fudge,
                                                       area_scale=area_scale)
            fake_spec = Spectrum(xaxis=x_wav, flux=y_wav, header=header)

            # save to file
            save_fake_observation(fake_spec,
                                  star,
                                  sim_num,
                                  params1,
                                  params2=params2,
                                  gamma=gamma,
                                  rv=rv,
                                  noise=None,
                                  replace=replace,
                                  noplots=noplots)
    elif mode == "bhm":
        # Do a bhm simulation
        x_wav, y_wav, header = fake_bhm_simulation(None,
                                                   params_1,
                                                   gamma,
                                                   noise=noise,
                                                   header=True)

        fake_spec = Spectrum(xaxis=x_wav, flux=y_wav, header=header)

        # save to file
        save_fake_observation(fake_spec,
                              star,
                              sim_num,
                              params1,
                              gamma=gamma,
                              noise=None,
                              replace=replace,
                              noplots=noplots)

    return None
示例#19
0
host_temp = 5300
comp_temp = 2300
# Load in some phoenix data and make a simulation
base = simulators.starfish_grid["raw_path"]
phoenix_wl = fits.getdata(
    os.path.join(base, "WAVE_PHOENIX-ACES-AGSS-COND-2011.fits")) / 10

host_phoenix = os.path.join(
    base, ("Z-0.0/lte{:05d}-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits"
           ).format(host_temp))

comp_phoenix = os.path.join(
    base, ("Z-0.0/lte{:05d}-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits"
           ).format(comp_temp))

unnorm_host_spec = Spectrum(flux=fits.getdata(host_phoenix), xaxis=phoenix_wl)
unnorm_comp_spec = Spectrum(flux=fits.getdata(comp_phoenix), xaxis=phoenix_wl)

min_wav = 2050
max_wav = 2250

unnorm_host_spec.wav_select(min_wav, max_wav)
unnorm_comp_spec.wav_select(min_wav, max_wav)

# local normalization
norm_host_flux = local_normalization(unnorm_host_spec.xaxis,
                                     unnorm_host_spec.flux,
                                     method="exponential",
                                     plot=False)
norm_comp_flux = local_normalization(unnorm_comp_spec.xaxis,
                                     unnorm_comp_spec.flux,
示例#20
0
# In[3]:


# Manually load Phoenix spectra
#phoenix_path = simulators...
phoenix_path = "/home/jneal/Phd/data/PHOENIX-ALL/PHOENIX/"

phoenix_1 = "Z-0.0/lte06000-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits"
phoenix_2 = "Z-0.0/lte05800-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits"

wav = fits.getdata(phoenix_path + "WAVE_PHOENIX-ACES-AGSS-COND-2011.fits")
phoenix1 = fits.getdata(phoenix_path + phoenix_1)
phoenix2 = fits.getdata(phoenix_path + phoenix_2)

spec1 = Spectrum(xaxis=wav/10, flux=phoenix1)
spec2 = Spectrum(xaxis=wav/10, flux=phoenix2)
spec1.wav_select(2000,2200)
spec2.wav_select(2000,2200)
spec1.plot(label="1")
spec2.plot(label="2")

plt.legend()
plt.show()



# In[4]:


from Convolution.IP_multi_Convolution import convolve_spectrum
示例#21
0
# In[ ]:

Artucus = [4300, 1.50, -0.5]
HD30501 = [5200, 4.5, 0.0]
ACES_bottom = [2300, 4.5, 0.0]
Sun = [5800, 4.5, 0.0]

# In[ ]:

# Teff 5800, 4.5, 0.0
# comparison_plot("Sun", *Sun)
from spectrum_overload import Spectrum

w_next, f_next, bb_next = load_Allard_Phoenix(
    "data/lte580-4.5-0.0a+0.0.BT-NextGen.7")
next_spec = Spectrum(xaxis=w_next, flux=f_next)
w_dusty_spec, f_dusty_spec, bb_dusty_spec = load_Allard_Phoenix(
    "data/lte058-4.5-0.0.BT-Dusty.spec.7")
dusty_spec = Spectrum(xaxis=w_dusty_spec, flux=f_dusty_spec)
w_settl, f_settl, bb_settl = load_Allard_Phoenix(
    "data/lte058.0-4.5-0.0a+0.0.BT-Settl.spec.7")
settl_spec = Spectrum(xaxis=w_settl, flux=f_settl)
w_cond, f_cond, bb_cond = load_Allard_Phoenix(
    "data/lte580-4.5-0.0a+0.0.BT-Cond.7")
cond_spec = Spectrum(xaxis=w_cond, flux=f_cond)
w_aces, f_aces = load_phoenix_aces(
    "data/lte05800-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits")
aces_spec = Spectrum(xaxis=w_aces, flux=f_aces)
w_dusty_fits, f_dusty_fits, bb_dusty_fits = load_Allard_Phoenix(
    "data/lte5800-4.50-0.0a+0.0.BT-dusty-giant-2013.cf128.sc.spid.fits")
w_dusty_fits = w_dusty_fits * 1000
示例#22
0
def compare_spectra(table, params):
    """Plot the min chi2 result against the observations."""
    extractor = DBExtractor(table)
    gamma_df = extractor.simple_extraction(columns=["gamma"])
    extreme_gammas = [min(gamma_df.gamma.values), max(gamma_df.gamma.values)]
    for ii, chi2_val in enumerate(chi2_names[0:-2]):
        df = extractor.ordered_extraction(
            columns=["teff_1", "logg_1", "feh_1", "gamma", chi2_val],
            order_by=chi2_val,
            limit=1,
            asc=True)

        params1 = [
            df["teff_1"].values[0], df["logg_1"].values[0],
            df["feh_1"].values[0]
        ]

        params1 = [float(param1) for param1 in params1]

        gamma = df["gamma"].values

        obs_name, obs_params, output_prefix = bhm_helper_function(
            params["star"], params["obsnum"], ii + 1)
        print(obs_name)
        obs_spec = load_spectrum(obs_name)

        # Mask out bad portion of observed spectra
        # obs_spec = spectrum_masking(obs_spec, params["star"], params["obsnum"], ii + 1)

        # Barycentric correct spectrum
        _obs_spec = barycorr_crires_spectrum(obs_spec, extra_offset=None)
        normalization_limits = [obs_spec.xaxis[0] - 5, obs_spec.xaxis[-1] + 5]
        # models
        # print("params for models", params1)
        mod1 = load_starfish_spectrum(params1,
                                      limits=normalization_limits,
                                      hdr=True,
                                      normalize=False,
                                      area_scale=True,
                                      flux_rescale=True)

        bhm_grid_func = one_comp_model(mod1.xaxis, mod1.flux, gammas=gamma)
        bhm_upper_gamma = one_comp_model(mod1.xaxis,
                                         mod1.flux,
                                         gammas=extreme_gammas[1])
        bhm_lower_gamma = one_comp_model(mod1.xaxis,
                                         mod1.flux,
                                         gammas=extreme_gammas[0])

        bhm_grid_model = bhm_grid_func(obs_spec.xaxis).squeeze()
        bhm_grid_model_full = bhm_grid_func(mod1.xaxis).squeeze()
        bhm_upper_gamma = bhm_upper_gamma(obs_spec.xaxis).squeeze()
        bhm_lower_gamma = bhm_lower_gamma(obs_spec.xaxis).squeeze()

        model_spec_full = Spectrum(flux=bhm_grid_model_full, xaxis=mod1.xaxis)
        model_spec = Spectrum(flux=bhm_grid_model, xaxis=obs_spec.xaxis)
        bhm_upper_gamma = Spectrum(flux=bhm_upper_gamma, xaxis=obs_spec.xaxis)
        bhm_lower_gamma = Spectrum(flux=bhm_lower_gamma, xaxis=obs_spec.xaxis)

        model_spec = model_spec.remove_nans()
        model_spec = model_spec.normalize(method="exponential")
        model_spec_full = model_spec_full.remove_nans()
        model_spec_full = model_spec_full.normalize(method="exponential")
        bhm_lower_gamma = bhm_lower_gamma.remove_nans()
        bhm_lower_gamma = bhm_lower_gamma.normalize(method="exponential")
        bhm_upper_gamma = bhm_upper_gamma.remove_nans()
        bhm_upper_gamma = bhm_upper_gamma.normalize(method="exponential")

        from mingle.utilities.chisqr import chi_squared
        chisqr = chi_squared(obs_spec.flux, model_spec.flux)

        print("Recomputed chi^2 = {0}".format(chisqr))
        print("Database chi^2 = {0}".format(df[chi2_val]))
        fig, ax = plt.subplots(1, 1, figsize=(15, 8))
        plt.plot(obs_spec.xaxis,
                 obs_spec.flux + 0.01,
                 label="0.05 + Observation, {}".format(obs_name))
        plt.plot(model_spec.xaxis,
                 model_spec.flux,
                 label="Minimum \chi^2 model")
        plt.plot(model_spec_full.xaxis,
                 model_spec_full.flux,
                 "--",
                 label="Model_full_res")
        plt.plot(bhm_lower_gamma.xaxis,
                 bhm_lower_gamma.flux,
                 "-.",
                 label="gamma={}".format(extreme_gammas[0]))
        plt.plot(bhm_upper_gamma.xaxis,
                 bhm_upper_gamma.flux,
                 ":",
                 label="gamma={}".format(extreme_gammas[1]))
        plt.title("bhm spectrum")
        plt.legend()

        fig.tight_layout()
        name = "{0}-{1}_{2}_{3}_bhm_min_chi2_spectrum_comparison_{4}.png".format(
            params["star"], params["obsnum"], params["chip"], chi2_val,
            params["suffix"])
        plt.savefig(os.path.join(params["path"], "plots", name))
        plt.close()

        plt.plot(obs_spec.xaxis, obs_spec.flux, label="Observation")
        plt.show()
def load_starfish_spectrum(params,
                           limits=None,
                           hdr=False,
                           normalize=False,
                           area_scale=False,
                           flux_rescale=False,
                           wav_scale=True):
    """Load spectrum from hdf5 grid file.

    Parameters
    ----------
    params: list
        Model parameters [teff, logg, Z]
    limits= List[float, float] default=None
        Wavelength limits.
    hdr: bool
       Include the model header. Default False.
    normalize: bool
        Locally normalize the spectrum. Default False.
    area_scale: bool
        Multiply by stellar surface area pi*R**2 (towards Earth)
    flux_rescale: bool
        Convert from /cm to /nm by dividing by 1e7
    wav_scale: bool
        Multiply by wavelength to turn into [erg/s/cm^2]

    Returns
    -------
    spec: Spectrum
        The loaded spectrum as Spectrum object.
    """
    my_hdf5 = HDF5Interface()
    my_hdf5.wl = my_hdf5.wl / 10  # Turn into Nanometer

    if hdr:
        flux, myhdr = my_hdf5.load_flux_hdr(np.array(params))
        spec = Spectrum(flux=flux, xaxis=my_hdf5.wl, header=myhdr)
    else:
        flux = my_hdf5.load_flux(np.array(params))
        spec = Spectrum(flux=flux, xaxis=my_hdf5.wl)

    if flux_rescale:
        spec = spec * 1e-7  # convert flux unit from /cm to /nm

    if area_scale:
        if hdr:
            emitting_area = phoenix_area(spec.header)
            spec = spec * emitting_area
            spec.header["emit_area"] = (emitting_area, "pi*r^2")
        else:
            raise ValueError("No header provided for stellar area scaling")

    if wav_scale:
        # Convert into photon counts, (constants ignored)
        spec = spec * spec.xaxis

    if normalize:
        spec = spec_local_norm(spec, method="exponential")

    if limits is not None:
        if limits[0] > spec.xaxis[-1] or limits[-1] < spec.xaxis[0]:
            logging.warning(
                "Warning: The wavelength limits do not overlap the spectrum."
                "There is no spectrum left... Check your wavelength, or limits."
            )
        spec.wav_select(*limits)

    return spec
raw_flux = fits.getdata(phoenix)
wav = fits.getdata(phoenix_wav)
plt.plot(wav, raw_flux, label="raw")
plt.plot(wl, flux * 5e7, label="starfish")
plt.legend()
plt.show()

params2 = [5200, 4.5, 0.0]
flux = myHDF5.load_flux(np.array(params2))

# Load direct phoenix spectra

path = simulators.starfish_grid["raw_path"]

phoenix = os.path.join(
    path, "Z-0.0",
    "lte{:05d}-{:0.2f}-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits".format(
        params2[0], params2[1]))
phoenix_wav = os.path.join(path, "WAVE_PHOENIX-ACES-AGSS-COND-2011.fits")

print(phoenix)
raw_flux = fits.getdata(phoenix)
wav = fits.getdata(phoenix_wav)
phoenix_spec = Spectrum(xaxis=wav, flux=raw_flux)
phoenix_spec.wav_select(wl[0], wl[-1])
plt.plot(wav, raw_flux, label="raw")
plt.plot(phoenix_spec.xaxis, phoenix_spec.flux, "--", label="spec")
plt.plot(wl, flux * 4e6, label="starfish")
plt.legend()
plt.show()
示例#25
0
def compare_spectra(table, params):
    """Plot the min chi2 result against the observations."""
    extractor = DBExtractor(table)
    for ii, chi2_val in enumerate(chi2_names[0:-2]):
        df = extractor.minimum_value_of(chi2_val)
        df = df[["teff_1", "logg_1", "feh_1", "gamma",
                 "teff_2", "logg_2", "feh_2", "rv", chi2_val]]

        params1 = [df["teff_1"].values[0], df["logg_1"].values[0], df["feh_1"].values[0]]
        params2 = [df["teff_2"].values[0], df["logg_2"].values[0], df["feh_2"].values[0]]

        params1 = [float(param1) for param1 in params1]
        params2 = [float(param2) for param2 in params2]

        gamma = df["gamma"].values
        rv = df["rv"].values

        from simulators.iam_module import iam_helper_function
        obs_name, obs_params, output_prefix = iam_helper_function(params["star"], params["obsnum"], ii + 1)

        obs_spec = load_spectrum(obs_name)

        # Mask out bad portion of observed spectra
        # obs_spec = spectrum_masking(obs_spec, params["star"], params["obsnum"], ii + 1)

        # Barycentric correct spectrum
        _obs_spec = barycorr_crires_spectrum(obs_spec, extra_offset=None)
        normalization_limits = [obs_spec.xaxis[0] - 5, obs_spec.xaxis[-1] + 5]
        # models
        # print("params for models", params1, params2)
        mod1 = load_starfish_spectrum(params1, limits=normalization_limits,
                                      hdr=True, normalize=False, area_scale=True,
                                      flux_rescale=True)

        mod2 = load_starfish_spectrum(params2, limits=normalization_limits,
                                      hdr=True, normalize=False, area_scale=True,
                                      flux_rescale=True)

        iam_grid_func = inherent_alpha_model(mod1.xaxis, mod1.flux, mod2.flux,
                                             rvs=rv, gammas=gamma)

        iam_grid_model = iam_grid_func(obs_spec.xaxis).squeeze()
        iam_grid_model_full = iam_grid_func(mod1.xaxis).squeeze()

        model_spec_full = Spectrum(flux=iam_grid_model_full, xaxis=mod1.xaxis)
        model_spec = Spectrum(flux=iam_grid_model, xaxis=obs_spec.xaxis)

        model_spec = model_spec.remove_nans()
        model_spec = model_spec.normalize(method="exponential")
        model_spec_full = model_spec_full.remove_nans()
        model_spec_full = model_spec_full.normalize(method="exponential")

        fig, ax = plt.subplots(1, 1)
        plt.plot(obs_spec.xaxis, obs_spec.flux, label="Observation")
        plt.plot(model_spec.xaxis, model_spec.flux, label="Minimum \chi^2 model")
        plt.plot(model_spec_full.xaxis, model_spec_full.flux, "--", label="Model_full_res")

        plt.legend()

        fig.tight_layout()
        name = "{0}-{1}_{2}_{3}_min_chi2_spectrum_comparison_{4}.png".format(
            params["star"], params["obsnum"], params["chip"], chi2_val, params["suffix"])
        plt.savefig(os.path.join(params["path"], "plots", name))
        plt.close()

        plt.plot(obs_spec.xaxis, obs_spec.flux, label="Observation")
        plt.show()
make_dirs(source_path, output_path)  # This is completed now.

folders = glob.glob(os.path.join(source_path, "*"))

phoenix_wave = os.path.join(source_path, "WAVE_PHOENIX-ACES-AGSS-COND-2011.fits")
wave = fits.getdata(phoenix_wave) / 10  # Convert to nm

for folder in folders:
    # Now have a specific directory with phoenix fits files.
    phoenix_files = glob.glob(os.path.join(folder, "*.fits"))

    for f in phoenix_files:
        print(f)
        # Load in file
        spectrum = fits.getdata(f)

        # Wavelenght narrow to K band only 2.07, 2.35 micron
        phoenix_spectrum = Spectrum(flux=spectrum, xaxis=wave)
        phoenix_spectrum.wav_select(*band_limits)

        # Convolutions
        # Convolution in spectrum overload?
        # phoenix_spectrum.convolution(R, ...)

        # Save result to fits file in new directory.

        new_f = f.replace(".fits", "_R{0:d}k.fits".format(int(resolution / 1000)))
        new_f = new_f.replace(source_path, output_path)
        print(new_f)
# Load in some phoenix data and make a simulation
path = simulators.starfish_grid["raw_path"]
phoenix_wl = fits.getdata(
    os.path.join(path, "WAVE_PHOENIX-ACES-AGSS-COND-2011.fits")) / 10

host_phoenix = os.path.join(
    path, "Z-0.0",
    "lte{:05d}-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits".format(
        host_temp))

comp_phoenix = os.path.join(
    path, "Z-0.0",
    "lte{:05d}-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits".format(
        comp_temp))

unnorm_host_spec = Spectrum(flux=fits.getdata(host_phoenix), xaxis=phoenix_wl)
unnorm_comp_spec = Spectrum(flux=fits.getdata(comp_phoenix), xaxis=phoenix_wl)

# Waveleght limits. The result is sensitive to these limits.
min_wav = 500
max_wav = 3500

unnorm_host_spec.wav_select(min_wav, max_wav)
unnorm_comp_spec.wav_select(min_wav, max_wav)

# Black body from spectrum temp.
norm_host_spec = Spectrum(flux=unnorm_host_spec.flux /
                          blackbody_lambda(phoenix_wl * u_nm, host_temp),
                          xaxis=phoenix_wl)
norm_comp_spec = Spectrum(flux=unnorm_comp_spec.flux /
                          blackbody_lambda(phoenix_wl * u_nm, host_temp),
from astro_scripts.plot_fits import get_wavelength, ccf_astro, vac2air
from loading_phoenix import load_phoenix_aces, load_Allard_Phoenix, align2model

get_ipython().run_line_magic('matplotlib', 'inline')

# # Synthethic HD30501
# Using the models with Teff 5200, 4.5 logg, -0.0 [Fe/H]
#
# HD30501 is in vacuum so will leave the models in vacuum also.

# In[ ]:

w_aces, f_aces = load_phoenix_aces(
    "data/lte05200-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits")
aces_spec = Spectrum(xaxis=w_aces, flux=f_aces)

w_settl, f_settl, bb_settl = load_Allard_Phoenix(
    "data/lte052.0-4.5-0.0a+0.0.BT-Settl.spec.7")
settl_spec = Spectrum(xaxis=w_settl, flux=f_settl)

w_dusty, f_dusty, bb_dusty = load_Allard_Phoenix(
    "data/lte052-4.5-0.0.BT-Dusty.spec.7")
dusty_spec = Spectrum(xaxis=w_dusty, flux=f_dusty)

w_next, f_next, bb_next = load_Allard_Phoenix(
    "data/lte052-4.5-0.0a+0.0.BT-NextGen.7")
next_spec = Spectrum(xaxis=w_next, flux=f_next)

w_cond, f_cond, bb_cond = load_Allard_Phoenix(
    "data/lte052-4.5-0.0a+0.0.BT-Cond.7")
示例#29
0
def test_spec_max_delta_applies_max_delta_on_xaxis(xaxis, rv, gamma):
    spec = Spectrum(xaxis=xaxis, flux=np.ones(len(xaxis)))

    assert spec_max_delta(spec, rv, gamma) == max_delta(xaxis, rv, gamma)