def _call_viewer_centerline(im_data, interslice_gap=20.0): # TODO: _call_viewer_centerline should not be "internal" anymore, i.e., remove the "_" """ Call Qt viewer for manually selecting labels. :param im_data: :param interslice_gap: :return: Image() of labels. """ from spinalcordtoolbox.gui.base import AnatomicalParams from spinalcordtoolbox.gui.centerline import launch_centerline_dialog if not isinstance(im_data, Image): raise ValueError("Expecting an image") # Get the number of slice along the (IS) axis im_tmp = im_data.copy().change_orientation('RPI') _, _, nz, _, _, _, pz, _ = im_tmp.dim del im_tmp params = AnatomicalParams() # setting maximum number of points to a reasonable value params.num_points = np.ceil(nz * pz / interslice_gap) + 2 params.interval_in_mm = interslice_gap params.starting_slice = 'top' im_mask_viewer = zeros_like(im_data) launch_centerline_dialog(im_data, im_mask_viewer, params) return im_mask_viewer
def _call_viewer_centerline(fname_in, interslice_gap=20.0): from spinalcordtoolbox.gui.base import AnatomicalParams from spinalcordtoolbox.gui.centerline import launch_centerline_dialog im_data = Image(fname_in) # Get the number of slice along the (IS) axis im_tmp = msct_image.change_orientation(im_data, 'RPI') _, _, nz, _, _, _, pz, _ = im_tmp.dim del im_tmp params = AnatomicalParams() # setting maximum number of points to a reasonable value params.num_points = np.ceil(nz * pz / interslice_gap) + 2 params.interval_in_mm = interslice_gap params.starting_slice = 'top' im_mask_viewer = msct_image.zeros_like(im_data) controller = launch_centerline_dialog(im_data, im_mask_viewer, params) fname_labels_viewer = sct.add_suffix(fname_in, '_viewer') if not controller.saved: sct.log.error( 'The viewer has been closed before entering all manual points. Please try again.' ) sys.exit(1) # save labels controller.as_niftii(fname_labels_viewer) return fname_labels_viewer
def _call_viewer_centerline(im_data, interslice_gap=20.0): # TODO: _call_viewer_centerline should not be "internal" anymore, i.e., remove the "_" """ FIXME doc Call Qt viewer for manually selecting labels. :param im_data: :param interslice_gap: :return: Image() of labels. """ from spinalcordtoolbox.gui.base import AnatomicalParams from spinalcordtoolbox.gui.centerline import launch_centerline_dialog if not isinstance(im_data, Image): raise ValueError("Expecting an image") # Get the number of slice along the (IS) axis im_tmp = im_data.copy().change_orientation('RPI') _, _, nz, _, _, _, pz, _ = im_tmp.dim del im_tmp params = AnatomicalParams() # setting maximum number of points to a reasonable value params.num_points = np.ceil(nz * pz / interslice_gap) + 2 params.interval_in_mm = interslice_gap # Starting at the top slice minus 1 in cases where the first slice is almost zero, due to gradient # non-linearity correction: # https://forum.spinalcordmri.org/t/centerline-viewer-enhancements-sct-v5-0-1/605/4?u=jcohenadad params.starting_slice = 'top_minus_one' im_mask_viewer = zeros_like(im_data) launch_centerline_dialog(im_data, im_mask_viewer, params) return im_mask_viewer
def propseg(img_input, options_dict): """ :param img_input: source image, to be segmented :param options_dict: arguments as dictionary :return: segmented Image """ arguments = options_dict fname_input_data = img_input.absolutepath fname_data = os.path.abspath(fname_input_data) contrast_type = arguments.c contrast_type_conversion = { 't1': 't1', 't2': 't2', 't2s': 't2', 'dwi': 't1' } contrast_type_propseg = contrast_type_conversion[contrast_type] # Starting building the command cmd = ['isct_propseg', '-t', contrast_type_propseg] if arguments.o is not None: fname_out = arguments.o else: fname_out = os.path.basename(add_suffix(fname_data, "_seg")) folder_output = os.path.dirname(fname_out) cmd += ['-o', folder_output] if not os.path.isdir(folder_output) and os.path.exists(folder_output): logger.error("output directory %s is not a valid directory" % folder_output) if not os.path.exists(folder_output): os.makedirs(folder_output) if arguments.down is not None: cmd += ["-down", str(arguments.down)] if arguments.up is not None: cmd += ["-up", str(arguments.up)] remove_temp_files = arguments.r verbose = int(arguments.v) # Update for propseg binary if verbose > 0: cmd += ["-verbose"] # Output options if arguments.mesh is not None: cmd += ["-mesh"] if arguments.centerline_binary is not None: cmd += ["-centerline-binary"] if arguments.CSF is not None: cmd += ["-CSF"] if arguments.centerline_coord is not None: cmd += ["-centerline-coord"] if arguments.cross is not None: cmd += ["-cross"] if arguments.init_tube is not None: cmd += ["-init-tube"] if arguments.low_resolution_mesh is not None: cmd += ["-low-resolution-mesh"] # TODO: Not present. Why is this here? Was this renamed? # if arguments.detect_nii is not None: # cmd += ["-detect-nii"] # TODO: Not present. Why is this here? Was this renamed? # if arguments.detect_png is not None: # cmd += ["-detect-png"] # Helping options use_viewer = None use_optic = True # enabled by default init_option = None rescale_header = arguments.rescale if arguments.init is not None: init_option = float(arguments.init) if init_option < 0: printv( 'Command-line usage error: ' + str(init_option) + " is not a valid value for '-init'", 1, 'error') sys.exit(1) if arguments.init_centerline is not None: if str(arguments.init_centerline) == "viewer": use_viewer = "centerline" elif str(arguments.init_centerline) == "hough": use_optic = False else: if rescale_header is not 1: fname_labels_viewer = func_rescale_header(str( arguments.init_centerline), rescale_header, verbose=verbose) else: fname_labels_viewer = str(arguments.init_centerline) cmd += ["-init-centerline", fname_labels_viewer] use_optic = False if arguments.init_mask is not None: if str(arguments.init_mask) == "viewer": use_viewer = "mask" else: if rescale_header is not 1: fname_labels_viewer = func_rescale_header( str(arguments.init_mask), rescale_header) else: fname_labels_viewer = str(arguments.init_mask) cmd += ["-init-mask", fname_labels_viewer] use_optic = False if arguments.mask_correction is not None: cmd += ["-mask-correction", str(arguments.mask_correction)] if arguments.radius is not None: cmd += ["-radius", str(arguments.radius)] # TODO: Not present. Why is this here? Was this renamed? # if arguments.detect_n is not None: # cmd += ["-detect-n", str(arguments.detect_n)] # TODO: Not present. Why is this here? Was this renamed? # if arguments.detect_gap is not None: # cmd += ["-detect-gap", str(arguments.detect_gap)] # TODO: Not present. Why is this here? Was this renamed? # if arguments.init_validation is not None: # cmd += ["-init-validation"] if arguments.nbiter is not None: cmd += ["-nbiter", str(arguments.nbiter)] if arguments.max_area is not None: cmd += ["-max-area", str(arguments.max_area)] if arguments.max_deformation is not None: cmd += ["-max-deformation", str(arguments.max_deformation)] if arguments.min_contrast is not None: cmd += ["-min-contrast", str(arguments.min_contrast)] if arguments.d is not None: cmd += ["-d", str(arguments["-d"])] if arguments.distance_search is not None: cmd += ["-dsearch", str(arguments.distance_search)] if arguments.alpha is not None: cmd += ["-alpha", str(arguments.alpha)] # check if input image is in 3D. Otherwise itk image reader will cut the 4D image in 3D volumes and only take the first one. image_input = Image(fname_data) image_input_rpi = image_input.copy().change_orientation('RPI') nx, ny, nz, nt, px, py, pz, pt = image_input_rpi.dim if nt > 1: printv( 'ERROR: your input image needs to be 3D in order to be segmented.', 1, 'error') path_data, file_data, ext_data = extract_fname(fname_data) path_tmp = tmp_create(basename="label_vertebrae") # rescale header (see issue #1406) if rescale_header is not 1: fname_data_propseg = func_rescale_header(fname_data, rescale_header) else: fname_data_propseg = fname_data # add to command cmd += ['-i', fname_data_propseg] # if centerline or mask is asked using viewer if use_viewer: from spinalcordtoolbox.gui.base import AnatomicalParams from spinalcordtoolbox.gui.centerline import launch_centerline_dialog params = AnatomicalParams() if use_viewer == 'mask': params.num_points = 3 params.interval_in_mm = 15 # superior-inferior interval between two consecutive labels params.starting_slice = 'midfovminusinterval' if use_viewer == 'centerline': # setting maximum number of points to a reasonable value params.num_points = 20 params.interval_in_mm = 30 params.starting_slice = 'top' im_data = Image(fname_data_propseg) im_mask_viewer = zeros_like(im_data) # im_mask_viewer.absolutepath = add_suffix(fname_data_propseg, '_labels_viewer') controller = launch_centerline_dialog(im_data, im_mask_viewer, params) fname_labels_viewer = add_suffix(fname_data_propseg, '_labels_viewer') if not controller.saved: printv( 'The viewer has been closed before entering all manual points. Please try again.', 1, 'error') sys.exit(1) # save labels controller.as_niftii(fname_labels_viewer) # add mask filename to parameters string if use_viewer == "centerline": cmd += ["-init-centerline", fname_labels_viewer] elif use_viewer == "mask": cmd += ["-init-mask", fname_labels_viewer] # If using OptiC elif use_optic: image_centerline = optic.detect_centerline(image_input, contrast_type, verbose) fname_centerline_optic = os.path.join(path_tmp, 'centerline_optic.nii.gz') image_centerline.save(fname_centerline_optic) cmd += ["-init-centerline", fname_centerline_optic] if init_option is not None: if init_option > 1: init_option /= (nz - 1) cmd += ['-init', str(init_option)] # enabling centerline extraction by default (needed by check_and_correct_segmentation() ) cmd += ['-centerline-binary'] # run propseg status, output = run_proc(cmd, verbose, raise_exception=False, is_sct_binary=True) # check status is not 0 if not status == 0: printv( 'Automatic cord detection failed. Please initialize using -init-centerline or -init-mask (see help)', 1, 'error') sys.exit(1) # build output filename fname_seg = os.path.join(folder_output, fname_out) fname_centerline = os.path.join( folder_output, os.path.basename(add_suffix(fname_data, "_centerline"))) # in case header was rescaled, we need to update the output file names by removing the "_rescaled" if rescale_header is not 1: mv( os.path.join( folder_output, add_suffix(os.path.basename(fname_data_propseg), "_seg")), fname_seg) mv( os.path.join( folder_output, add_suffix(os.path.basename(fname_data_propseg), "_centerline")), fname_centerline) # if user was used, copy the labelled points to the output folder (they will then be scaled back) if use_viewer: fname_labels_viewer_new = os.path.join( folder_output, os.path.basename(add_suffix(fname_data, "_labels_viewer"))) copy(fname_labels_viewer, fname_labels_viewer_new) # update variable (used later) fname_labels_viewer = fname_labels_viewer_new # check consistency of segmentation if arguments.correct_seg: check_and_correct_segmentation(fname_seg, fname_centerline, folder_output=folder_output, threshold_distance=3.0, remove_temp_files=remove_temp_files, verbose=verbose) # copy header from input to segmentation to make sure qform is the same printv("Copy header input --> output(s) to make sure qform is the same.", verbose) list_fname = [fname_seg, fname_centerline] if use_viewer: list_fname.append(fname_labels_viewer) for fname in list_fname: im = Image(fname) im.header = image_input.header im.save(dtype='int8' ) # they are all binary masks hence fine to save as int8 return Image(fname_seg)
nx, ny, nz, nt, px, py, pz, pt = image_input.dim if nt > 1: sct.log.error( 'ERROR: your input image needs to be 3D in order to be segmented.') path_data, file_data, ext_data = sct.extract_fname(fname_data) # if centerline or mask is asked using viewer if use_viewer: from spinalcordtoolbox.gui.base import AnatomicalParams from spinalcordtoolbox.gui.centerline import launch_centerline_dialog params = AnatomicalParams() if use_viewer == 'mask': params.num_points = 3 params.interval_in_mm = 15 # superior-inferior interval between two consecutive labels params.starting_slice = 'midfovminusinterval' if use_viewer == 'centerline': # setting maximum number of points to a reasonable value params.num_points = 20 params.interval_in_mm = 30 params.starting_slice = 'top' image = Image(fname_data) tmp_output_file = Image(image) tmp_output_file.data *= 0 tmp_output_file.setFileName( sct.add_suffix(fname_data, '_labels_viewer')) controller = launch_centerline_dialog(image, tmp_output_file, params) if not controller.saved: sct.log.error(
def propseg(img_input, options_dict): """ :param img_input: source image, to be segmented :param options_dict: arguments as dictionary :return: segmented Image """ arguments = options_dict fname_input_data = img_input.absolutepath fname_data = os.path.abspath(fname_input_data) contrast_type = arguments["-c"] contrast_type_conversion = { 't1': 't1', 't2': 't2', 't2s': 't2', 'dwi': 't1' } contrast_type_propseg = contrast_type_conversion[contrast_type] # Starting building the command cmd = ['isct_propseg', '-t', contrast_type_propseg] if "-ofolder" in arguments: folder_output = arguments["-ofolder"] else: folder_output = './' cmd += ['-o', folder_output] if not os.path.isdir(folder_output) and os.path.exists(folder_output): sct.log.error("output directory %s is not a valid directory" % folder_output) if not os.path.exists(folder_output): os.makedirs(folder_output) if "-down" in arguments: cmd += ["-down", str(arguments["-down"])] if "-up" in arguments: cmd += ["-up", str(arguments["-up"])] remove_temp_files = 1 if "-r" in arguments: remove_temp_files = int(arguments["-r"]) verbose = 0 if "-v" in arguments: if arguments["-v"] is "1": verbose = 2 cmd += ["-verbose"] # Output options if "-mesh" in arguments: cmd += ["-mesh"] if "-centerline-binary" in arguments: cmd += ["-centerline-binary"] if "-CSF" in arguments: cmd += ["-CSF"] if "-centerline-coord" in arguments: cmd += ["-centerline-coord"] if "-cross" in arguments: cmd += ["-cross"] if "-init-tube" in arguments: cmd += ["-init-tube"] if "-low-resolution-mesh" in arguments: cmd += ["-low-resolution-mesh"] if "-detect-nii" in arguments: cmd += ["-detect-nii"] if "-detect-png" in arguments: cmd += ["-detect-png"] # Helping options use_viewer = None use_optic = True # enabled by default init_option = None rescale_header = arguments["-rescale"] if "-init" in arguments: init_option = float(arguments["-init"]) if init_option < 0: sct.log.error('Command-line usage error: ' + str(init_option) + " is not a valid value for '-init'") sys.exit(1) if "-init-centerline" in arguments: if str(arguments["-init-centerline"]) == "viewer": use_viewer = "centerline" elif str(arguments["-init-centerline"]) == "hough": use_optic = False else: if rescale_header is not 1: fname_labels_viewer = func_rescale_header(str( arguments["-init-centerline"]), rescale_header, verbose=verbose) else: fname_labels_viewer = str(arguments["-init-centerline"]) cmd += ["-init-centerline", fname_labels_viewer] use_optic = False if "-init-mask" in arguments: if str(arguments["-init-mask"]) == "viewer": use_viewer = "mask" else: if rescale_header is not 1: fname_labels_viewer = func_rescale_header( str(arguments["-init-mask"]), rescale_header) else: fname_labels_viewer = str(arguments["-init-mask"]) cmd += ["-init-mask", fname_labels_viewer] use_optic = False if "-mask-correction" in arguments: cmd += ["-mask-correction", str(arguments["-mask-correction"])] if "-radius" in arguments: cmd += ["-radius", str(arguments["-radius"])] if "-detect-n" in arguments: cmd += ["-detect-n", str(arguments["-detect-n"])] if "-detect-gap" in arguments: cmd += ["-detect-gap", str(arguments["-detect-gap"])] if "-init-validation" in arguments: cmd += ["-init-validation"] if "-nbiter" in arguments: cmd += ["-nbiter", str(arguments["-nbiter"])] if "-max-area" in arguments: cmd += ["-max-area", str(arguments["-max-area"])] if "-max-deformation" in arguments: cmd += ["-max-deformation", str(arguments["-max-deformation"])] if "-min-contrast" in arguments: cmd += ["-min-contrast", str(arguments["-min-contrast"])] if "-d" in arguments: cmd += ["-d", str(arguments["-d"])] if "-distance-search" in arguments: cmd += ["-dsearch", str(arguments["-distance-search"])] if "-alpha" in arguments: cmd += ["-alpha", str(arguments["-alpha"])] # check if input image is in 3D. Otherwise itk image reader will cut the 4D image in 3D volumes and only take the first one. image_input = Image(fname_data) nx, ny, nz, nt, px, py, pz, pt = image_input.dim if nt > 1: sct.log.error( 'ERROR: your input image needs to be 3D in order to be segmented.') path_data, file_data, ext_data = sct.extract_fname(fname_data) # rescale header (see issue #1406) if rescale_header is not 1: fname_data_propseg = func_rescale_header(fname_data, rescale_header) else: fname_data_propseg = fname_data # add to command cmd += ['-i', fname_data_propseg] # if centerline or mask is asked using viewer if use_viewer: from spinalcordtoolbox.gui.base import AnatomicalParams from spinalcordtoolbox.gui.centerline import launch_centerline_dialog params = AnatomicalParams() if use_viewer == 'mask': params.num_points = 3 params.interval_in_mm = 15 # superior-inferior interval between two consecutive labels params.starting_slice = 'midfovminusinterval' if use_viewer == 'centerline': # setting maximum number of points to a reasonable value params.num_points = 20 params.interval_in_mm = 30 params.starting_slice = 'top' im_data = Image(fname_data_propseg) im_mask_viewer = msct_image.zeros_like(im_data) # im_mask_viewer.absolutepath = sct.add_suffix(fname_data_propseg, '_labels_viewer') controller = launch_centerline_dialog(im_data, im_mask_viewer, params) fname_labels_viewer = sct.add_suffix(fname_data_propseg, '_labels_viewer') if not controller.saved: sct.log.error( 'The viewer has been closed before entering all manual points. Please try again.' ) sys.exit(1) # save labels controller.as_niftii(fname_labels_viewer) # add mask filename to parameters string if use_viewer == "centerline": cmd += ["-init-centerline", fname_labels_viewer] elif use_viewer == "mask": cmd += ["-init-mask", fname_labels_viewer] # If using OptiC elif use_optic: path_script = os.path.dirname(__file__) path_sct = os.path.dirname(path_script) path_classifier = os.path.join(path_sct, 'data/optic_models', '{}_model'.format(contrast_type)) init_option_optic, fname_centerline = optic.detect_centerline( fname_data_propseg, contrast_type, path_classifier, folder_output, remove_temp_files, init_option, verbose=verbose) if init_option is not None: # TODO: what's this??? cmd += ["-init", str(init_option_optic)] cmd += ["-init-centerline", fname_centerline] # enabling centerline extraction by default (needed by check_and_correct_segmentation() ) cmd += ['-centerline-binary'] # run propseg status, output = sct.run(cmd, verbose, raise_exception=False) # check status is not 0 if not status == 0: sct.log.error( 'Automatic cord detection failed. Please initialize using -init-centerline or ' '-init-mask (see help).') sys.exit(1) # build output filename fname_seg = os.path.join( folder_output, os.path.basename(sct.add_suffix(fname_data, "_seg"))) fname_centerline = os.path.join( folder_output, os.path.basename(sct.add_suffix(fname_data, "_centerline"))) # in case header was rescaled, we need to update the output file names by removing the "_rescaled" if rescale_header is not 1: sct.mv( os.path.join( folder_output, sct.add_suffix(os.path.basename(fname_data_propseg), "_seg")), fname_seg) sct.mv( os.path.join( folder_output, sct.add_suffix(os.path.basename(fname_data_propseg), "_centerline")), fname_centerline) # if user was used, copy the labelled points to the output folder (they will then be scaled back) if use_viewer: fname_labels_viewer_new = os.path.join( folder_output, os.path.basename(sct.add_suffix(fname_data, "_labels_viewer"))) sct.copy(fname_labels_viewer, fname_labels_viewer_new) # update variable (used later) fname_labels_viewer = fname_labels_viewer_new # check consistency of segmentation if arguments["-correct-seg"] == "1": check_and_correct_segmentation(fname_seg, fname_centerline, folder_output=folder_output, threshold_distance=3.0, remove_temp_files=remove_temp_files, verbose=verbose) # copy header from input to segmentation to make sure qform is the same sct.printv( "Copy header input --> output(s) to make sure qform is the same.", verbose) list_fname = [fname_seg, fname_centerline] if use_viewer: list_fname.append(fname_labels_viewer) for fname in list_fname: im = Image(fname) im.header = image_input.header im.save(dtype='int8' ) # they are all binary masks hence fine to save as int8 return Image(fname_seg)
def propseg(img_input, options_dict): """ :param img_input: source image, to be segmented :param options_dict: arguments as dictionary :return: segmented Image """ arguments = options_dict fname_input_data = img_input.absolutepath fname_data = os.path.abspath(fname_input_data) contrast_type = arguments["-c"] contrast_type_conversion = {'t1': 't1', 't2': 't2', 't2s': 't2', 'dwi': 't1'} contrast_type_propseg = contrast_type_conversion[contrast_type] # Starting building the command cmd = ['isct_propseg', '-t', contrast_type_propseg] if "-ofolder" in arguments: folder_output = arguments["-ofolder"] else: folder_output = './' cmd += ['-o', folder_output] if not os.path.isdir(folder_output) and os.path.exists(folder_output): logger.error("output directory %s is not a valid directory" % folder_output) if not os.path.exists(folder_output): os.makedirs(folder_output) if "-down" in arguments: cmd += ["-down", str(arguments["-down"])] if "-up" in arguments: cmd += ["-up", str(arguments["-up"])] remove_temp_files = 1 if "-r" in arguments: remove_temp_files = int(arguments["-r"]) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level # Update for propseg binary if verbose > 0: cmd += ["-verbose"] # Output options if "-mesh" in arguments: cmd += ["-mesh"] if "-centerline-binary" in arguments: cmd += ["-centerline-binary"] if "-CSF" in arguments: cmd += ["-CSF"] if "-centerline-coord" in arguments: cmd += ["-centerline-coord"] if "-cross" in arguments: cmd += ["-cross"] if "-init-tube" in arguments: cmd += ["-init-tube"] if "-low-resolution-mesh" in arguments: cmd += ["-low-resolution-mesh"] if "-detect-nii" in arguments: cmd += ["-detect-nii"] if "-detect-png" in arguments: cmd += ["-detect-png"] # Helping options use_viewer = None use_optic = True # enabled by default init_option = None rescale_header = arguments["-rescale"] if "-init" in arguments: init_option = float(arguments["-init"]) if init_option < 0: sct.printv('Command-line usage error: ' + str(init_option) + " is not a valid value for '-init'", 1, 'error') sys.exit(1) if "-init-centerline" in arguments: if str(arguments["-init-centerline"]) == "viewer": use_viewer = "centerline" elif str(arguments["-init-centerline"]) == "hough": use_optic = False else: if rescale_header is not 1: fname_labels_viewer = func_rescale_header(str(arguments["-init-centerline"]), rescale_header, verbose=verbose) else: fname_labels_viewer = str(arguments["-init-centerline"]) cmd += ["-init-centerline", fname_labels_viewer] use_optic = False if "-init-mask" in arguments: if str(arguments["-init-mask"]) == "viewer": use_viewer = "mask" else: if rescale_header is not 1: fname_labels_viewer = func_rescale_header(str(arguments["-init-mask"]), rescale_header) else: fname_labels_viewer = str(arguments["-init-mask"]) cmd += ["-init-mask", fname_labels_viewer] use_optic = False if "-mask-correction" in arguments: cmd += ["-mask-correction", str(arguments["-mask-correction"])] if "-radius" in arguments: cmd += ["-radius", str(arguments["-radius"])] if "-detect-n" in arguments: cmd += ["-detect-n", str(arguments["-detect-n"])] if "-detect-gap" in arguments: cmd += ["-detect-gap", str(arguments["-detect-gap"])] if "-init-validation" in arguments: cmd += ["-init-validation"] if "-nbiter" in arguments: cmd += ["-nbiter", str(arguments["-nbiter"])] if "-max-area" in arguments: cmd += ["-max-area", str(arguments["-max-area"])] if "-max-deformation" in arguments: cmd += ["-max-deformation", str(arguments["-max-deformation"])] if "-min-contrast" in arguments: cmd += ["-min-contrast", str(arguments["-min-contrast"])] if "-d" in arguments: cmd += ["-d", str(arguments["-d"])] if "-distance-search" in arguments: cmd += ["-dsearch", str(arguments["-distance-search"])] if "-alpha" in arguments: cmd += ["-alpha", str(arguments["-alpha"])] # check if input image is in 3D. Otherwise itk image reader will cut the 4D image in 3D volumes and only take the first one. image_input = Image(fname_data) image_input_rpi = image_input.copy().change_orientation('RPI') nx, ny, nz, nt, px, py, pz, pt = image_input_rpi.dim if nt > 1: sct.printv('ERROR: your input image needs to be 3D in order to be segmented.', 1, 'error') path_data, file_data, ext_data = sct.extract_fname(fname_data) path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose) # rescale header (see issue #1406) if rescale_header is not 1: fname_data_propseg = func_rescale_header(fname_data, rescale_header) else: fname_data_propseg = fname_data # add to command cmd += ['-i', fname_data_propseg] # if centerline or mask is asked using viewer if use_viewer: from spinalcordtoolbox.gui.base import AnatomicalParams from spinalcordtoolbox.gui.centerline import launch_centerline_dialog params = AnatomicalParams() if use_viewer == 'mask': params.num_points = 3 params.interval_in_mm = 15 # superior-inferior interval between two consecutive labels params.starting_slice = 'midfovminusinterval' if use_viewer == 'centerline': # setting maximum number of points to a reasonable value params.num_points = 20 params.interval_in_mm = 30 params.starting_slice = 'top' im_data = Image(fname_data_propseg) im_mask_viewer = msct_image.zeros_like(im_data) # im_mask_viewer.absolutepath = sct.add_suffix(fname_data_propseg, '_labels_viewer') controller = launch_centerline_dialog(im_data, im_mask_viewer, params) fname_labels_viewer = sct.add_suffix(fname_data_propseg, '_labels_viewer') if not controller.saved: sct.printv('The viewer has been closed before entering all manual points. Please try again.', 1, 'error') sys.exit(1) # save labels controller.as_niftii(fname_labels_viewer) # add mask filename to parameters string if use_viewer == "centerline": cmd += ["-init-centerline", fname_labels_viewer] elif use_viewer == "mask": cmd += ["-init-mask", fname_labels_viewer] # If using OptiC elif use_optic: image_centerline = optic.detect_centerline(image_input, contrast_type, verbose) fname_centerline_optic = os.path.join(path_tmp, 'centerline_optic.nii.gz') image_centerline.save(fname_centerline_optic) cmd += ["-init-centerline", fname_centerline_optic] if init_option is not None: if init_option > 1: init_option /= (nz - 1) cmd += ['-init', str(init_option)] # enabling centerline extraction by default (needed by check_and_correct_segmentation() ) cmd += ['-centerline-binary'] # run propseg status, output = sct.run(cmd, verbose, raise_exception=False, is_sct_binary=True) # check status is not 0 if not status == 0: sct.printv('Automatic cord detection failed. Please initialize using -init-centerline or -init-mask (see help)', 1, 'error') sys.exit(1) # build output filename fname_seg = os.path.join(folder_output, os.path.basename(sct.add_suffix(fname_data, "_seg"))) fname_centerline = os.path.join(folder_output, os.path.basename(sct.add_suffix(fname_data, "_centerline"))) # in case header was rescaled, we need to update the output file names by removing the "_rescaled" if rescale_header is not 1: sct.mv(os.path.join(folder_output, sct.add_suffix(os.path.basename(fname_data_propseg), "_seg")), fname_seg) sct.mv(os.path.join(folder_output, sct.add_suffix(os.path.basename(fname_data_propseg), "_centerline")), fname_centerline) # if user was used, copy the labelled points to the output folder (they will then be scaled back) if use_viewer: fname_labels_viewer_new = os.path.join(folder_output, os.path.basename(sct.add_suffix(fname_data, "_labels_viewer"))) sct.copy(fname_labels_viewer, fname_labels_viewer_new) # update variable (used later) fname_labels_viewer = fname_labels_viewer_new # check consistency of segmentation if arguments["-correct-seg"] == "1": check_and_correct_segmentation(fname_seg, fname_centerline, folder_output=folder_output, threshold_distance=3.0, remove_temp_files=remove_temp_files, verbose=verbose) # copy header from input to segmentation to make sure qform is the same sct.printv("Copy header input --> output(s) to make sure qform is the same.", verbose) list_fname = [fname_seg, fname_centerline] if use_viewer: list_fname.append(fname_labels_viewer) for fname in list_fname: im = Image(fname) im.header = image_input.header im.save(dtype='int8') # they are all binary masks hence fine to save as int8 return Image(fname_seg)