示例#1
0
def main(argv=None):
    """
    Main function
    :param argv:
    :return:
    """
    parser = get_parser()
    arguments = parser.parse_args(argv)
    verbose = arguments.v
    set_global_loglevel(verbose=verbose)

    dim_list = ['x', 'y', 'z', 't']

    fname_in = arguments.i
    fname_out = arguments.o
    output_type = arguments.type

    # Open file(s)
    im = Image(fname_in)
    data = im.data  # 3d or 4d numpy array
    dim = im.dim

    # run command
    if arguments.otsu is not None:
        param = arguments.otsu
        data_out = sct_math.otsu(data, param)

    elif arguments.adap is not None:
        param = arguments.adap
        data_out = sct_math.adap(data, param[0], param[1])

    elif arguments.otsu_median is not None:
        param = arguments.otsu_median
        data_out = sct_math.otsu_median(data, param[0], param[1])

    elif arguments.thr is not None:
        param = arguments.thr
        data_out = sct_math.threshold(data, param)

    elif arguments.percent is not None:
        param = arguments.percent
        data_out = sct_math.perc(data, param)

    elif arguments.bin is not None:
        bin_thr = arguments.bin
        data_out = sct_math.binarize(data, bin_thr=bin_thr)

    elif arguments.add is not None:
        data2 = get_data_or_scalar(arguments.add, data)
        data_concat = sct_math.concatenate_along_4th_dimension(data, data2)
        data_out = np.sum(data_concat, axis=3)

    elif arguments.sub is not None:
        data2 = get_data_or_scalar(arguments.sub, data)
        data_out = data - data2

    elif arguments.laplacian is not None:
        sigmas = arguments.laplacian
        if len(sigmas) == 1:
            sigmas = [sigmas for i in range(len(data.shape))]
        elif len(sigmas) != len(data.shape):
            printv(
                parser.error(
                    'ERROR: -laplacian need the same number of inputs as the number of image dimension OR only one input'
                ))
        # adjust sigma based on voxel size
        sigmas = [sigmas[i] / dim[i + 4] for i in range(3)]
        # smooth data
        data_out = sct_math.laplacian(data, sigmas)

    elif arguments.mul is not None:
        data2 = get_data_or_scalar(arguments.mul, data)
        data_concat = sct_math.concatenate_along_4th_dimension(data, data2)
        data_out = np.prod(data_concat, axis=3)

    elif arguments.div is not None:
        data2 = get_data_or_scalar(arguments.div, data)
        data_out = np.divide(data, data2)

    elif arguments.mean is not None:
        dim = dim_list.index(arguments.mean)
        if dim + 1 > len(
                np.shape(data)):  # in case input volume is 3d and dim=t
            data = data[..., np.newaxis]
        data_out = np.mean(data, dim)

    elif arguments.rms is not None:
        dim = dim_list.index(arguments.rms)
        if dim + 1 > len(
                np.shape(data)):  # in case input volume is 3d and dim=t
            data = data[..., np.newaxis]
        data_out = np.sqrt(np.mean(np.square(data.astype(float)), dim))

    elif arguments.std is not None:
        dim = dim_list.index(arguments.std)
        if dim + 1 > len(
                np.shape(data)):  # in case input volume is 3d and dim=t
            data = data[..., np.newaxis]
        data_out = np.std(data, dim, ddof=1)

    elif arguments.smooth is not None:
        sigmas = arguments.smooth
        if len(sigmas) == 1:
            sigmas = [sigmas[0] for i in range(len(data.shape))]
        elif len(sigmas) != len(data.shape):
            printv(
                parser.error(
                    'ERROR: -smooth need the same number of inputs as the number of image dimension OR only one input'
                ))
        # adjust sigma based on voxel size
        sigmas = [sigmas[i] / dim[i + 4] for i in range(3)]
        # smooth data
        data_out = sct_math.smooth(data, sigmas)

    elif arguments.dilate is not None:
        if arguments.shape in ['disk', 'square'] and arguments.dim is None:
            printv(
                parser.error(
                    'ERROR: -dim is required for -dilate with 2D morphological kernel'
                ))
        data_out = sct_math.dilate(data,
                                   size=arguments.dilate,
                                   shape=arguments.shape,
                                   dim=arguments.dim)

    elif arguments.erode is not None:
        if arguments.shape in ['disk', 'square'] and arguments.dim is None:
            printv(
                parser.error(
                    'ERROR: -dim is required for -erode with 2D morphological kernel'
                ))
        data_out = sct_math.erode(data,
                                  size=arguments.erode,
                                  shape=arguments.shape,
                                  dim=arguments.dim)

    elif arguments.denoise is not None:
        # parse denoising arguments
        p, b = 1, 5  # default arguments
        list_denoise = (arguments.denoise).split(",")
        for i in list_denoise:
            if 'p' in i:
                p = int(i.split('=')[1])
            if 'b' in i:
                b = int(i.split('=')[1])
        data_out = sct_math.denoise_nlmeans(data,
                                            patch_radius=p,
                                            block_radius=b)

    elif arguments.symmetrize is not None:
        data_out = (data + data[list(range(data.shape[0] -
                                           1, -1, -1)), :, :]) / float(2)

    elif arguments.mi is not None:
        # input 1 = from flag -i --> im
        # input 2 = from flag -mi
        im_2 = Image(arguments.mi)
        compute_similarity(im,
                           im_2,
                           fname_out,
                           metric='mi',
                           metric_full='Mutual information',
                           verbose=verbose)
        data_out = None

    elif arguments.minorm is not None:
        im_2 = Image(arguments.minorm)
        compute_similarity(im,
                           im_2,
                           fname_out,
                           metric='minorm',
                           metric_full='Normalized Mutual information',
                           verbose=verbose)
        data_out = None

    elif arguments.corr is not None:
        # input 1 = from flag -i --> im
        # input 2 = from flag -mi
        im_2 = Image(arguments.corr)
        compute_similarity(im,
                           im_2,
                           fname_out,
                           metric='corr',
                           metric_full='Pearson correlation coefficient',
                           verbose=verbose)
        data_out = None

    # if no flag is set
    else:
        data_out = None
        printv(
            parser.error(
                'ERROR: you need to specify an operation to do on the input image'
            ))

    if data_out is not None:
        # Write output
        nii_out = Image(fname_in)  # use header of input file
        nii_out.data = data_out
        nii_out.save(fname_out, dtype=output_type)
    # TODO: case of multiple outputs
    # assert len(data_out) == n_out
    # if n_in == n_out:
    #     for im_in, d_out, fn_out in zip(nii, data_out, fname_out):
    #         im_in.data = d_out
    #         im_in.absolutepath = fn_out
    #         if arguments.w is not None:
    #             im_in.hdr.set_intent('vector', (), '')
    #         im_in.save()
    # elif n_out == 1:
    #     nii[0].data = data_out[0]
    #     nii[0].absolutepath = fname_out[0]
    #     if arguments.w is not None:
    #             nii[0].hdr.set_intent('vector', (), '')
    #     nii[0].save()
    # elif n_out > n_in:
    #     for dat_out, name_out in zip(data_out, fname_out):
    #         im_out = nii[0].copy()
    #         im_out.data = dat_out
    #         im_out.absolutepath = name_out
    #         if arguments.w is not None:
    #             im_out.hdr.set_intent('vector', (), '')
    #         im_out.save()
    # else:
    #     printv(parser.usage.generate(error='ERROR: not the correct numbers of inputs and outputs'))

    # display message
    if data_out is not None:
        display_viewer_syntax([fname_out], verbose=verbose)
    else:
        printv('\nDone! File created: ' + fname_out, verbose, 'info')
示例#2
0
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv)
    verbose = arguments.v
    set_global_loglevel(verbose=verbose)

    # initializations
    initz = ''
    initcenter = ''
    fname_initlabel = ''
    file_labelz = 'labelz.nii.gz'
    param = Param()

    fname_in = os.path.abspath(arguments.i)
    fname_seg = os.path.abspath(arguments.s)
    contrast = arguments.c
    path_template = os.path.abspath(arguments.t)
    scale_dist = arguments.scale_dist
    path_output = arguments.ofolder
    param.path_qc = arguments.qc
    if arguments.discfile is not None:
        fname_disc = os.path.abspath(arguments.discfile)
    else:
        fname_disc = None
    if arguments.initz is not None:
        initz = arguments.initz
        if len(initz) != 2:
            raise ValueError('--initz takes two arguments: position in superior-inferior direction, label value')
    if arguments.initcenter is not None:
        initcenter = arguments.initcenter
    # if user provided text file, parse and overwrite arguments
    if arguments.initfile is not None:
        file = open(arguments.initfile, 'r')
        initfile = ' ' + file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for idx_arg, arg in enumerate(arg_initfile):
            if arg == '-initz':
                initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')]
                if len(initz) != 2:
                    raise ValueError('--initz takes two arguments: position in superior-inferior direction, label value')
            if arg == '-initcenter':
                initcenter = int(arg_initfile[idx_arg + 1])
    if arguments.initlabel is not None:
        # get absolute path of label
        fname_initlabel = os.path.abspath(arguments.initlabel)
    if arguments.param is not None:
        param.update(arguments.param[0])
    remove_temp_files = arguments.r
    clean_labels = arguments.clean_labels
    laplacian = arguments.laplacian

    path_tmp = tmp_create(basename="label_vertebrae")

    # Copying input data to tmp folder
    printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = cache_signature(
        input_files=[fname_in, fname_seg],
    )
    cachefile = os.path.join(curdir, "straightening.cache")
    if cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(os.path.join(curdir, "warp_straight2curve.nii.gz")) and os.path.isfile(os.path.join(curdir, "straight_ref.nii.gz")):
        # if they exist, copy them into current folder
        printv('Reusing existing warping field which seems to be valid', verbose, 'warning')
        copy(os.path.join(curdir, "warp_curve2straight.nii.gz"), 'warp_curve2straight.nii.gz')
        copy(os.path.join(curdir, "warp_straight2curve.nii.gz"), 'warp_straight2curve.nii.gz')
        copy(os.path.join(curdir, "straight_ref.nii.gz"), 'straight_ref.nii.gz')
        # apply straightening
        s, o = run_proc(['sct_apply_transfo', '-i', 'data.nii', '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'data_straight.nii'])
    else:
        sct_straighten_spinalcord.main(argv=[
            '-i', 'data.nii',
            '-s', 'segmentation.nii',
            '-r', str(remove_temp_files),
            '-v', '0',
        ])
        cache_save(cachefile, cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = run_proc(['sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x', 'linear', '-o', 'data_straightr.nii'], verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    printv('\nApply straightening to segmentation...', verbose)
    sct_apply_transfo.main(['-i', 'segmentation.nii',
                            '-d', 'data_straightr.nii',
                            '-w', 'warp_curve2straight.nii.gz',
                            '-o', 'segmentation_straight.nii',
                            '-x', 'linear',
                            '-v', '0'])

    # Threshold segmentation at 0.5
    img = Image('segmentation_straight.nii')
    img.data = threshold(img.data, 0.5)
    img.save()


    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        printv('\nApply straightening to disc labels...', verbose)
        run_proc('sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
                 (fname_disc,
                  'data_straightr.nii',
                  'warp_curve2straight.nii.gz',
                  'labeldisc_straight.nii.gz',
                  'label'),
                 verbose=verbose
                 )
        label_vert('segmentation_straight.nii', 'labeldisc_straight.nii.gz', verbose=1)

    else:
        # create label to identify disc
        printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, file_labelz)
        if initz or initcenter:
            if initcenter:
                # find z centered in FOV
                nii = Image('segmentation.nii').change_orientation("RPI")
                nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
                z_center = int(np.round(nz / 2))  # get z_center
                initz = [z_center, initcenter]

            im_label = create_labels_along_segmentation(Image('segmentation.nii'), [(initz[0], initz[1])])
            im_label.data = dilate(im_label.data, 3, 'ball')
            im_label.save(fname_labelz)

        elif fname_initlabel:
            Image(fname_initlabel).save(fname_labelz)

        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            if not remove_temp_files:  # because verbose is here also used for keeping temp files
                verbose_detect_c2c3 = 2
            else:
                verbose_detect_c2c3 = 0
            im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast, verbose=verbose_detect_c2c3)
            ind_label = np.where(im_label_c2c3.data)
            if not np.size(ind_label) == 0:
                im_label_c2c3.data[ind_label] = 3
            else:
                printv('Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils', 1, 'error')
                sys.exit()
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz)

        # Apply straightening to z-label
        printv('\nAnd apply straightening to label...', verbose)
        sct_apply_transfo.main(['-i', file_labelz,
                                '-d', 'data_straightr.nii',
                                '-w', 'warp_curve2straight.nii.gz',
                                '-o', 'labelz_straight.nii.gz',
                                '-x', 'nn',
                                '-v', '0'])
        # get z value and disk value to initialize labeling
        printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        printv('.. ' + str(init_disc), verbose)

        # apply laplacian filtering
        if laplacian:
            printv('\nApply Laplacian filter...', verbose)
            img = Image("data_straightr.nii")

            # apply std dev to each axis of the image
            sigmas = [1 for i in range(len(img.data.shape))]

            # adjust sigma based on voxel size
            sigmas = [sigmas[i] / img.dim[i + 4] for i in range(3)]

            # smooth data
            img.data = laplacian(img.data, sigmas)
            img.save()


        # detect vertebral levels on straight spinal cord
        init_disc[1] = init_disc[1] - 1
        vertebral_detection('data_straightr.nii', 'segmentation_straight.nii', contrast, param, init_disc=init_disc,
                            verbose=verbose, path_template=path_template, path_output=path_output, scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    printv('\nUn-straighten labeling...', verbose)
    sct_apply_transfo.main(['-i', 'segmentation_straight_labeled.nii',
                            '-d', 'segmentation.nii',
                            '-w', 'warp_straight2curve.nii.gz',
                            '-o', 'segmentation_labeled.nii',
                            '-x', 'nn',
                            '-v', '0'])

    if clean_labels:
        # Clean labeled segmentation
        printv('\nClean labeled segmentation (correct interpolation errors)...', verbose)
        clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii', 'segmentation_labeled.nii')

    # label discs
    printv('\nLabel discs...', verbose)
    printv('\nUn-straighten labeled discs...', verbose)
    run_proc('sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
             ('segmentation_straight_labeled_disc.nii',
              'segmentation.nii',
              'warp_straight2curve.nii.gz',
              'segmentation_labeled_disc.nii',
              'label'),
             verbose=verbose,
             is_sct_binary=True,
             )


    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output, file_seg + '_labeled' + ext_seg)
    printv('\nGenerate output files...', verbose)
    generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled)
    generate_output_file(os.path.join(path_tmp, "segmentation_labeled_disc.nii"), os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose=verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        printv('\nRemove temporary files...', verbose)
        rmtree(path_tmp)

    # Generate QC report
    if param.path_qc is not None:
        path_qc = os.path.abspath(arguments.qc)
        qc_dataset = arguments.qc_dataset
        qc_subject = arguments.qc_subject
        labeled_seg_file = os.path.join(path_output, file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in, fname_seg=labeled_seg_file, args=argv, path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset, subject=qc_subject, process='sct_label_vertebrae')

    display_viewer_syntax([fname_in, fname_seg_labeled], colormaps=['', 'subcortical'], opacities=['1', '0.5'])