def __init__(self, n_neurons, max_delay_per_neuron, source_vertex, machine_time_step, timescale_factor, constraints=None, label="DelayExtension"): """ Creates a new DelayExtension Object. """ AbstractPartitionableVertex.__init__(self, n_atoms=n_neurons, constraints=constraints, label=label, max_atoms_per_core=256) AbstractDataSpecableVertex.__init__( self, machine_time_step=machine_time_step, timescale_factor=timescale_factor) AbstractProvidesIncomingEdgeConstraints.__init__(self) AbstractOutgoingEdgeSameContiguousKeysRestrictor.__init__(self) self._max_delay_per_neuron = max_delay_per_neuron self._max_stages = 0 self._source_vertex = source_vertex joint_constrant = PartitionerSameSizeAsVertexConstraint(source_vertex) self.add_constraint(joint_constrant)
def __init__(self, n_neurons, max_delay_per_neuron, source_vertex, machine_time_step, timescale_factor, constraints=None, label="DelayExtension"): """ Creates a new DelayExtension Object. """ AbstractPartitionableVertex.__init__(self, n_atoms=n_neurons, constraints=constraints, label=label, max_atoms_per_core=256) AbstractDataSpecableVertex.__init__( self, machine_time_step=machine_time_step, timescale_factor=timescale_factor) AbstractProvidesIncomingEdgeConstraints.__init__(self) AbstractProvidesNKeysForEdge.__init__(self) self._max_delay_per_neuron = max_delay_per_neuron self._max_stages = 0 self._source_vertex = source_vertex joint_constrant = PartitionerSameSizeAsVertexConstraint(source_vertex) self.add_constraint(joint_constrant)
def __init__( self, n_neurons, binary, label, max_atoms_per_core, machine_time_step, timescale_factor, spikes_per_second, ring_buffer_sigma, model_name, neuron_model, input_type, synapse_type, threshold_type, additional_input=None, constraints=None): ReceiveBuffersToHostBasicImpl.__init__(self) AbstractPartitionableVertex.__init__( self, n_neurons, label, max_atoms_per_core, constraints) AbstractDataSpecableVertex.__init__( self, machine_time_step, timescale_factor) AbstractSpikeRecordable.__init__(self) AbstractVRecordable.__init__(self) AbstractGSynRecordable.__init__(self) AbstractProvidesOutgoingEdgeConstraints.__init__(self) AbstractProvidesIncomingEdgeConstraints.__init__(self) AbstractPopulationInitializable.__init__(self) AbstractPopulationSettable.__init__(self) AbstractMappable.__init__(self) self._binary = binary self._label = label self._machine_time_step = machine_time_step self._timescale_factor = timescale_factor self._model_name = model_name self._neuron_model = neuron_model self._input_type = input_type self._threshold_type = threshold_type self._additional_input = additional_input # Set up for recording self._spike_recorder = SpikeRecorder(machine_time_step) self._v_recorder = VRecorder(machine_time_step) self._gsyn_recorder = GsynRecorder(machine_time_step) self._spike_buffer_max_size = config.getint( "Buffers", "spike_buffer_size") self._v_buffer_max_size = config.getint( "Buffers", "v_buffer_size") self._gsyn_buffer_max_size = config.getint( "Buffers", "gsyn_buffer_size") self._buffer_size_before_receive = config.getint( "Buffers", "buffer_size_before_receive") self._time_between_requests = config.getint( "Buffers", "time_between_requests") # Set up synapse handling self._synapse_manager = SynapticManager( synapse_type, machine_time_step, ring_buffer_sigma, spikes_per_second) # Get buffering information for later use self._receive_buffer_host = config.get( "Buffers", "receive_buffer_host") self._receive_buffer_port = config.getint( "Buffers", "receive_buffer_port") self._enable_buffered_recording = config.getboolean( "Buffers", "enable_buffered_recording") # bool for if state has changed. self._change_requires_mapping = True